
Approximate Solutions to Differential Equations –  
Slope Fields (graphical) and Euler’s Method (numeric) 

by Dave Slomer 

 
Leonhard Euler was a great Swiss mathematician. The base of the natural logarithm 
function, e, called Euler’s number, is named in his honor. While studying calculus, Euler 
wondered about graphical and numeric solutions to differential equations, such as 

x
y

dx

dy +=
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, that cannot be solved symbolically through elementary methods such as 

separation of variables. (Why can it not be so solved?)  
 
In figures 1 through 3 below, you see representations of the differential equation 

x
y

dx

dy +=
2

. First, there is a graphical view via a “slope field.” Second, there is a numeric 

solution, a table of values that “Euler’s method” of solving differential equations yields 
when the point (–3,2.7) is used as a starting point. And third, the connected, piecewise-
linear graph of the Euler’s method numeric data is superimposed on the slope field. 
 

Fig. 1  Fig.2   

Fig. 3  Fig. 4  
 
A slope field is constructed in a “lattice” (or “grid”) of points. See figure 4 for a lattice 
similar to the one used to produce the slope field in figures 1 and 3. At each point in the 
lattice, we draw a short line segment whose slope is determined by the differential 

equation. For example, at (–3,2), 23
2

2 −=−+=
dx

dy
, so a short line segment with slope –2 

is drawn, centered at (–3,2). 
 



Euler’s method of solving differential equations of the form ),( yxF
dx

dy = (such as the 

one above) is an interpretation of numeric integration (left-hand Riemann sums), cleverly 
applied at n equally-spaced x-coordinates over an interval [a,b]. Euler figured that, since 
the symbols dy and dx are related by such relationships as those below, he could easily 
enough solve the differential equation numerically: 

dx = ∆x, where ∆x = (b-a)/n, the length of each subinterval, called the stepsize for 
Euler’s method, for good reason, you’ll see; 

dy = F(x,y)· dx, which is essentially the given differential equation; and  

x
dx

dy
y ∆⋅≈∆ , since all smooth functions look linear over a small enough 

interval—that is, since 
x

y
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∆
∆≈  if ∆x is close enough to 0. 

So, Euler’s method is this: pick a point to start at (the initial point or initial condition), 
then follow the slope field segment at that point in the direction it points (determined by 
its slope, y'(x,y)) by moving ∆x units horizontally and ∆y units vertically, where ∆y ≈≈ 
y'(x,y)· ∆x. Because of how the “rise over run” property of lines works, you’ll be at a 
logical second point (only an approximation, but as close as ∆x and ∆y let you get), from 
which the process may be repeated. 
 
By understanding just those thoughts, you can solve differential equations as accurately 
as you wish (provided n is big enough and, consequently, ∆x is small enough) over some 
interval [a,b]. All you need to know is what y'(x,y) is, and that is just the right-hand side 
of the differential equation you are working on.  
 
 

Exercise 1: Graphically “solve” x
y

dx

dy +=
2

 by making its slope field, by hand, to get a 

good feel for and understanding of both processes (slope fields and Euler’s method).  
 
In words, the differential equation says “the slope at any point in the slope field is the 
sum of the x- and half of the y-coordinate at that point.” Use a lattice with x going from  
–3 to 3 and with y doing the same thing. Start at x= -3. 
 

x y dy/dx Action to take: 
-3 -3 -3+-3/2, or -4.5 Draw short segment with slope -4.5 at (-3,-3) 
-3 -2 -3+-2/2, or -4  
-3 -1   
-3 0   
-3 1   
-3 2   
-3 3   

 
Finished with x = -3, we would move to x = -2 and repeat the process for all the y’s. Then 
on to x = -1, 0, 1, 2, and 3, each for all the y’s. No, thanks!! So, hereafter, we’ll let the 



TI-89 do it for us. To do so, you have to change the MODE  for the Graph to 6, DIFF 
EQUATION  (see figure 5).  
 

Fig. 5  Fig. 6  
 
Then you have to enter the differential equation using y1 instead of y and t instead of x as 
shown in figure 6. Setting the WINDOW  is done pretty much as usual (does it remind 
you of parametric mode?). To get what’s in figure 1, make x go from –4 to 4 and y from 
–3 to 3, and set fldres to the number of horizontal points to use in the lattice, 14. (See 
figure 10.)  
  
Now, apply Euler’s method (by hand) with stepsize = 1, using (-3,2.9) as the initial point. 
Fill in the table below. The calculations can be daunting, so feel free to apply the home 
screen commands shown in figures 7 and 8, which considerably simplify the calculations, 
although they do involve two complex commands. You do not have to retype the 
commands over and over. Just use the cursor keys to go up and “grab” the repeated 
commands (in the right order). Note that y changes before x does. If you do it right, the 
last 2 lines of the screen will always be the coordinates of the next point to plot. 
 
Point  to plot: Calculations for next point: 

x y dy/dx ∆y, or 
dy/dx· ∆x 

Next y, or 
y+∆y 

-3 2.9 1.45-3, or -
1.55 

-1.55· 1,  
or –1.55 

2.9-1.55,  
or 1.35 

-3+∆x, 
or -2 

above, 
1.35 

.675+-2, or -
1.325 

-1.325· 1,  
or -1.325 

1.35-1.325,  
or .025 

-1 .025    
0     
1     
2     
3     

 

Fig. 7  Fig. 8  



 
Finally, plot those points and connect them with line segments right on the slope field. 
(The graph will look like a smooth enough curve if the stepsize is small enough.) In 
addition to seeing slope field evidence about how the general solution looks, you will see 
a graphical representation of a numeric approximation of the solution of the symbolic 

differential equation x
y

dx

dy +=
2

, the specific solution that passes through  

(–3,2.9). You should get what’s in figure 3. 
 
 
It’s unlikely you’d ever want to go through that again, so use your ’89 hereafter to 
produce “Euler solutions” to differential equations. You have to specify the initial 
condition (e.g., that y = 2.9 when x = -3) on the Y = screen (see fig. 9) and set the 
WINDOW  (fig. 10). Then you will get what’s in figure 3. You can set ncurves to any 
whole number from 1 through 10 to allow drawing solutions for more than one initial 
condition (see figs. 10 and 12, where 5 solutions have been requested and drawn). Set 
tstep (stepsize) to something smaller than 1 since it’s not you that’s doing the work—the 
more points the smaller ∆x and the better the accuracy. Consider not using EULER  as the 
Solution Method  (see fig. 11), since the RK  (Runge-Kutta) method, based on 
Simpson’s rule for numerically approximating integrals, is more accurate. 
 

Fig. 9  Fig. 10  
 

Fig. 11  Fig. 12  
 
Look back at figure 1. Would you have guessed that 5 specific solutions look like those 
shown in figure 12?  Adding the Euler solution curves in figure 12, you can almost guess 
at a symbolic (exact) solution. All solutions appear to approach a line as −∞→x  and 
grow quickly once the y-axis is passed. Could part of the solution be the line y = -x and 
part be y = ex? Could xexy +−=  be a solution? Well, no, but sort of… 
 



 
Exercise 2: The fact is that a general solution is 422/ −−= xCey x . As usual, for any C 

you get a different specific solution. You can easily verify that x
y

dx

dy +=
2

. Do so.  

 
After you do it by hand, use the home screen F3 (Calc) option for derivative, if you want. 

Fig. 12a  
 
 
Exercise 3: For which value of C does the specific solution go through the origin (the 
middle solution in figure 12)?  
 
 
Exercise 4: From exercises 2 and 3, you know the equation of a specific solution to the 
original differential equation. In DIFF EQUATIONS MODE , graph the slope field 
again and save the picture. To do so, on the graph screen, press F1 2 (Save) ENTER, 
make the Type Picture (not the default, GDB), move the cursor to the Variable box, and 
enter a name, like sf. See figure 13. Note the WINDOW  you’re in, then go to 
FUNCTION  Graph MODE , make y1 your function from exercises 3 and 4 and graph it 
in the same window. The recall the picture. To do so, press F1 1 (Open) ENTER, make 
the Type Picture, and select the picture’s name in the Variable box,. Does the specific 
solution clearly fit the slope field as in figure 14? (If not, you might have miscalculated C 
in Exercise 3.) 
 

Fig. 13  Fig. 14  
 
 
While ncurves (fig. 10 and 12) affords a quick way to get several specific solutions, it 
takes the process out of your hands. But pressing F8 (IC)  lets you set initial conditions 
interactively, one after another. Just enter the coordinates of the initial condition (or move 
the cursor to it) and press ENTER.  



 
Exercise 5: Go back to DIFF EQUATIONS MODE  and draw three specific solution 
curves.  
• Get a line as one of the solutions.  
• For which value of C will you get a line from the general solution?  
• Is there another line you could get? Why?  
• For the next initial condition, aim for the point (1,2).  
• Find the C that will make the solution pass through (1,2).  
• Finally, make the result go beneath the line you got for the first solution. 
Did you get something like the following picture? 
 

Fig. 15  
 
 
The following programs implement Euler’s method to draw the Euler solution in figure 3 
and to make the table of Euler numbers in figure 2. Studying them may help clarify the 
method. Both programs require the initial condition to be stored as (x,y) with dx and n 
also input. Before running, the function dydx must be defined to be the right hand side of 
the differential equation (as shown in figure 8). 
 
EulerPic(x,y,dx,n) 
Prgm 
  For k,1,n 
    x»x0 
    y»y0 
    y+dydx(x,y)*dx»y 
    x+dx»x 
    Line x,y,x0,y0 
  EndFor 
EndPrgm 
 
EulerTbl(x,y,dx,n) 
Prog 
  For k,1,n 
    x»xv[k] 
    y»yv[k] 
    x+dx»x 
    y+dydx(x,y)*dx»y 
  EndFor 



EndFunc 
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