Points on a Perpendicular Bisector

Time required
ID: 8868

Activity Overview

In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once the concept of "a point that is equidistant from two points" is illustrated, extensions including isosceles triangles, kites, and chords in a circle may be explored.

Topic: Triangles and Their Centers

- Use inductive reasoning to postulate a relationship between a line segment and its perpendicular bisector.
- Apply the Perpendicular Bisector Theorem and its converse.

Teacher Preparation

- This activity is designed to be used in a high school or middle school geometry classroom. This activity is designed to be student-centered with the teacher acting as a facilitator while students work cooperatively. Use the following pages as a framework as to how the activity will progress.
- The Perpendicular Bisector Theorem states:

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

- In a kite, one diagonal is the perpendicular bisector of the other.
- In a circle, the perpendicular bisector of a chord will contain the center (it is a diameter of the circle).
- To download the student TI-Nspire document (.tns file) and student worksheet, go to education.ti.com/exchange and enter "8868" in the quick search box.

Associated Materials

- VerticalAdjacent.tns
- VerticalAdjacent_Student.doc

Problem 1 - A Segment and its Perpendicular Bisector
Have students open the file and read the directions on page 1.2.
On page 1.3, students should construct a segment (MENU > Points \& Lines > Segment) and label the endpoints A and B.

Note: If the vertices are not labeled as they are created, students may simply use the Text tool (MENU > Action > Text).

Next, students will construct the perpendicular bisector of $\overline{A B}$ by selecting MENU > Construction > Perpendicular Bisector. To use the Perpendicular Bisector tool, select the segment by either clicking once on the segment itself or by clicking once on each of its endpoints.

Students should now place a point on the perpendicular bisector using the Point On tool (MENU > Points \& Lines > Point On).

Label this point as point P.

Have students use the Intersection Point(s) tool from the Points \& Lines menu to mark the intersection of $\overline{A B}$ and its perpendicular bisector.

Label this point as point X.

Students can now measure $\angle P X A$ and $\angle P X B$ using the Angle tool from the Measurement menu to confirm that the first part of the definition of a perpendicular bisector holds.
(Use the Angle tool by clicking on three points that name the angle you want to measure. The vertex of the angle should be the second point chosen.)

Problem 2 - The Perpendicular Bisector Theorem

After reading the directions on page 2.1, students should advance to page 2.2 , where they find a point P on the perpendicular bisector of $\overline{A B}$.

Have students use the Segment tool to draw $\overline{A P}$ and $\overline{B P}$, followed by the Length tool measure the length of these two segments.

Direct students to drag point P to several different locations and observe any changes in the measurements from point P to the endpoints of the segment.

Be sure that students test cases in which point P is on the opposite side of $\overline{A B}$.

Ask: What kind of triangle is $\triangle A B P$?
How do you know?

Problem 3 - Isosceles Triangles and Kites

Students should advance to page 3.1 and read the directions.

On page 3.2, point P is on the perpendicular bisector of $\overline{A B}$, and $\overline{A P}$ and $\overline{B P}$ are shown.

Have students construct a new point Q on the perpendicular bisector on the opposite side of $\overline{A B}$ as point P, like the one shown to the right.

Direct students to use the Segment tool to construct $\overline{A Q}$ and $\overline{B Q}$. Then have them measure the lengths of these two segments, as well as the lengths of $\overline{A P}$ and $\overline{B P}$.

Quadrilateral $A P B Q$ is a kite. Students should drag points P and Q to investigate the properties of kites.

Have them record observations on the worksheet.
Students may also drag points P and Q to the same side of $\overline{A B}$ to investigate concave kites. In a concave kite, one diagonal is outside the kite ($\overline{A B}$ in the screenshot to the right).

Problem 4 - Chords of a Circle

After reading page 4.1, students should move to page 4.2 where they will use the Circle tool from the Shapes menu to draw a circle. Have them label the center of this circle as point P.

Next, have students use the Segment tool to construct a chord of the circle. Label the endpoints of this segment A and B.

