Proof by Mathematical Induction

Name : \qquad

11
TI-Nspire ${ }^{\text {TM }}$

Assessment

Student

Question: 1.
i) Determine the sum of the first 10 cubic numbers: $1^{3}+2^{3}+3^{3}+\ldots+10^{3}$.
$1^{3}+2^{3}+3^{3}+\ldots 10^{3}=3025$. [1 mark]
Answer mark only. Students may use the sum command, individual entries, lists or sigma notation.
ii) Square the sum of the first 10 whole numbers and comment on the result: $(1+2+3+\ldots 10)^{2}$
$(1+2+3+\ldots 10)^{2}=3025$ [1 mark]
Students should observe that the result is the same as the previous answer, but should not generalise. [1 mark]
iii) Explain how the diagram shown here relates to part (i) and (ii) above.

Overall area, ignoring 'white spaces': $(1+2+3+4) \times(1+2+3+4)$
This is equal to: $(1+2+3+4)^{2}$. [Part II]
There is one 1×1 square, two 2×2 squares, three 3×3 and four 4×4.
'Overlap' fills in the white spaces.
This is equivalent to: $1 \times 1^{2}+2 \times 2^{2}+3 \times 3^{2}+4 \times 4^{2}=1^{3}+2^{3}+3^{3}+4^{3}$
$\therefore(1+2+3+4)^{2}=1^{3}+2^{3}+3^{3}+4^{3}$. Part (I) and (II) extend to 10.

Question: 2.

i) Express $\sum_{x=3}^{7} x^{3}$ in expanded form and hence evaluate the result.

Expanded form: $3^{3}+4^{3}+5^{3}+6^{3}+7^{3}=775$. [1 mark for expanded form +1 answer mark 775]
ii) Express: $(4+5+6+\ldots 20)^{2}$ using sigma \sum notation and hence evaluate the result.

2 marks
$\left(\sum_{x=4}^{20} x\right)^{2}=41616 \quad$ [1 mark for sigma notation, note location of squared sign +1 answer mark: 41616]
\qquad

Question: 3.

i) Complete the following table of values:

\boldsymbol{n}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\sum_{x=1}^{n} x^{3}$	1	9	36	100	225	441	784	1296	2025	3025
$\sum_{x=1}^{n} x$	1	3	6	10	15	21	28	36	45	55
$\left(\sum_{x=1}^{n} x\right)^{2}$	1	9	36	100	225	441	784	1296	2025	3025

2 marks - Marks based on proportion of correct answers. Note that students can generate a table of values with the calculator making this question particularly quick for 'technology savvy' students.
ii) Determine a rule for $\sum_{x=1}^{n} x^{3}$, express your answer in factorised form.

Students may use quartic regression (courtesy of the table): $\frac{x^{4}}{4}+\frac{x^{3}}{2}+\frac{x^{2}}{4}$ [1 mark] or prior knowledge

$$
\text { pertaining to sums of whole numbers and information gleaned so far. Factorised form: } \frac{x^{2}(x+1)^{2}}{4} \text { [1 mark] }
$$

iii) Determine a rule for $\sum_{x=1}^{n} x$, expressing the rule in factorised form.

Students may use quadratic regression (courtesy of the table): $\frac{x^{2}+x}{2}=\frac{x(x+1)}{2}$
[1 mark for expanded form +1 mark for factorised form]
iv) Use your results from part (ii) and (iii) to show that $\left(\sum_{x=1}^{n} x\right)^{2}=\sum_{x=1}^{n} n^{3}$
$\sum_{x=1}^{n} x \times \sum_{x=1}^{n} x=\left(\sum_{x=1}^{n} x\right)^{2}=\left(\frac{x(x+1)}{2}\right)^{2}=\frac{x^{2}(x+1)^{2}}{4}$ which is the same as: $\sum_{x=1}^{n} n^{3}$

Question: 4.

Use mathematical induction to prove the formula for the sum of the first n^{3} whole numbers.

