Review

17. Trace the figure below. Calculate the measure of each lettered angle.

DRAWING REGULAR POLYGONS

You can draw a regular polygon's central angle by extending segments from the center of the polygon to its consecutive vertices. For example, the measure of each central angle of a hexagon is 60°.
Using central angles, you can draw regular polygons on a graphing calculator. This is done with parametric equations, which give the
 x - and y-coordinates of a point in terms of a third variable, or parameter, t.

Set your calculator's mode to degrees and parametric. Set a friendly window with an x-range of -4.7 to 4.7 and a y-range of -3.1 to 3.1. Set a t-range of 0 to 360 , and t-step of 60 . Enter the equations $x=3 \cos t$ and $y=3 \sin t$, and graph them. You should get a hexagon.
The equations you graphed are actually the parametric equations
for a circle. By using a t-step of 60 for t-values from 0 to 360 , you tell the calculator to compute only six points for the circle.
Use your calculator to investigate the following. Summarize your findings.

- Choose different t-steps to draw different regular polygons, such as an equilateral triangle, a square, a regular pentagon, and so on. What is the measure of each central angle of an n-gone?
- What happens as the measure of each central angle of a regular polygon decreases?
- What happens as you draw polygons with more and more sides?
- Experiment with rotating your polygons by choosing different t-min and t-max values. For example, set a t-range of -45 to 315 , then draw a square.
- Find a way to draw star polygons on your calculator. Can you explain how this works?

