Absolutely!
Name \qquad
\qquad
Problem 1- Solving absolute value equations
You can use the properties of equality to solve an absolute value equation.

$$
\begin{gathered}
|x|+6=10 \\
|x|+6-6=10-6 \\
|x|=4 \\
x=4 \text { or } x=-4
\end{gathered}
$$

Linear absolute value equations have 0,1 , or 2 solutions.
A variable expression inside the absolute value bars can be positive or negative. To solve an absolute value equation, write it as two equations and solve them.

\[

\]

You cannot use the graphing calculator to directly solve absolute value equations, but you can use it to check your answers. To check the solutions $x=4$ or $x=-4$ for $|x|+6=10$, first press 4 STO X,T, Θ, n to store 4 as x.

Then test the equation. The abs(command is found in the MATH > NUM menu, and the equals sign is found in the TEST menu. If the calculator returns a value of 1 , the equation is true for the current value of x. If the calculator returns a 0 , the equation is not true for the current value of x.

Check the solution $x=-4$.

- Check the solutions $x=6$ and $x=-4$ for $|x-1|=5$.

Absolutely!

Exercises

Solve each equation. If there is no solution, write no solution. Check your answers.

1. $|x|+5=7$
2. $|x-8|=-5$
3. $2|x|+3=11$
4. $|x+2|=6$
5. $|x|-8=-3$
6. $|x+2|=0$
7. $|3-x|=9$
8. $|2 x-3|=7$

Problem 2 - Absolute value inequalities

You can write absolute value inequalities as compound inequalities. To see this, graph some absolute value inequalities in a single variable.

Run the program ABSINEQ and enter $|x-1|<3$. To do so, enter $\mathbf{a b s}(\mathbf{x}-\mathbf{1})$ as the left side, $\mathbf{3}$ as the right side, and choose < as the inequality sign. Then choose View Graph to graph this inequality.

Examine the graph. $|x-1|<3$ means all numbers less than 3 units away from 1 , so $-3<x-1<3$.

Caution: In some graphs, the open circle will appear to be filled in. This is because of the size of the pixels on the graph screen. For this reason, a "closed circle" is shown as a cross, and an "open circle" as a open or closed square.

Absolutely!

Press CLEAR to exit the graph screen and ENTER to run the ABSINEQ program again. Use the calculator to graph $|x-1|>3$.

The inequality $|x-1|>3$ means all numbers more than 3 units away from 1 , so $x<-2$ or $x>4$. In general, by looking at the inequality sign, you can choose how to write an absolute value inequality as a compound inequality.

Rules for absolute value inequalities

Rule 1 An inequality of the form $|A|<b$ is equivalent to $-b<|A|<b$.

Rule 2 An inequality of the form $|A|>b$ is equivalent to $A<-b$ or $A>b$.

Rule 3 An inequality of the form $|A| \leq b$ is equivalent to $-b \leq|A| \leq b$.

Rule 4 An inequality of the form $|A| \geq b$ is equivalent to $A \leq-b$ or $A \geq b$.

Exercises

Match each absolute value inequality with an equivalent compound inequality.

1. $|x|<3$
a. $x<-6$ or $x>6$
2. $|x|>6$
b. $x+18 \leq-12$ or $x+18 \geq 12$
3. $|5 x| \leq 30$
c. $-3<x<3$
4. $|x+18| \geq 12$
d. $x<-2$ or $x>2$
5. $|x|<6$
e. $-6<x<6$
6. $|x|+2>4$
f. $-30 \leq 5 x \leq 30$

Write each absolute value inequality as a compound inequality.
7. $|x+7|>9$
8. $|3 x| \leq 6$
9. $|x|-3>7$
10. $|2.5 x|<4$

Problem 3 - Solving absolute value inequalities

Sometimes it is necessary to simplify the absolute value inequality before writing it as a compound inequality.

$$
\begin{gathered}
4|x+1|<16 \\
\frac{4|x+1|}{4}<\frac{16}{4} \\
|x+1|<4 \\
-4<x+1<4 \\
-4-1<x+1-1<4-1 \\
-5<x<3
\end{gathered}
$$

You can graph absolute value inequalities to check your answers. Compare the graph of the original (unsolved) inequality with the solution.

- Use the ABSINEQ program to graph $4|x+1|<16$ and compare its graph with the solution given above.

Exercises

Solve each inequality. If there is no solution, write no solution. Check your answers.

1. $|x+8| \geq 3$
2. $|x-2| \leq 1$
3. $|x-3| \leq 4$
4. $|2 x-5|>9$
5. $|2 x-3| \geq 7$
6. $|x+2|>0$
7. $|3-x|<9$
8. $-3|x+2|>-12$
