| Absolutely! | Name  |
|-------------|-------|
| ABSINEQ.8xp | Class |

# Problem 1– Solving absolute value equations

You can use the properties of equality to solve an absolute value equation.

$$|x| + 6 = 10$$
  
 $|x| + 6 - 6 = 10 - 6$   
 $|x| = 4$   
 $x = 4 \text{ or } x = -4$ 

Linear absolute value equations have 0, 1, or 2 solutions.

A variable expression inside the absolute value bars can be positive or negative. To solve an absolute value equation, write it as two equations and solve them.

$$|x-1| = 5$$
  

$$x-1=5 or x-1=-5$$
  

$$x-1+1=5+1 or x-1+1=-5+1$$
  

$$x=6 or x=-4$$

You cannot use the graphing calculator to directly solve absolute value equations, but you can use it to check your answers. To check the solutions x = 4 or x = -4 for |x| + 6 = 10, first press (4) STOP (X,T,  $\Theta$ , n) to store 4 as x.

Then test the equation. The **abs(** command is found in the **MATH > NUM** menu, and the equals sign is found in the **TEST** menu. If the calculator returns a value of 1, the equation is true for the current value of *x*. If the calculator returns a 0, the equation is not true for the current value of *x*.

Check the solution x = -4.

Check the solutions *x* = 6 and *x* = -4 for |*x* - 1| = 5.





#### Exercises

Solve each equation. If there is no solution, write no solution. Check your answers.

| <b>1.</b>   <i>x</i>   + 5 = 7 | <b>2.</b>   <i>x</i> −8  = −5 | <b>3.</b> 2  <i>x</i>   + 3 = 11 | <b>4.</b>   <i>x</i> + 2  = 6 |
|--------------------------------|-------------------------------|----------------------------------|-------------------------------|
|                                |                               |                                  |                               |
|                                |                               |                                  |                               |
|                                |                               |                                  |                               |
|                                |                               |                                  |                               |

**5.** |x| - 8 = -3 **6.** |x + 2| = 0 **7.** |3 - x| = 9 **8.** |2x - 3| = 7

## Problem 2 – Absolute value inequalities

You can write absolute value inequalities as compound inequalities. To see this, graph some absolute value inequalities in a single variable.

Run the program **ABSINEQ** and enter |x - 1| < 3. To do so, enter **abs(x-1)** as the left side, **3** as the right side, and choose < as the inequality sign. Then choose **View Graph** to graph this inequality.



Examine the graph. |x - 1| < 3 means all numbers less than 3 units away from 1, so -3 < x - 1 < 3.

**Caution:** In some graphs, the open circle will appear to be filled in. This is because of the size of the pixels on the graph screen. For this reason, a "closed circle" is shown as a cross, and an "open circle" as a open or closed square.





Press <u>CLEAR</u> to exit the graph screen and <u>ENTER</u> to run the **ABSINEQ** program again. Use the calculator to graph |x - 1| > 3.

The inequality |x - 1| > 3 means all numbers more than 3 units away from 1, so x < -2 or x > 4. In general, by looking at the inequality sign, you can choose how to write an absolute value inequality as a compound inequality.



| Rules for absolute value inequalities |                                                                                |        |                                                                                     |  |  |
|---------------------------------------|--------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------|--|--|
| Rule 1                                | An inequality of the form $ A  < b$ is<br>equivalent to $-b <  A  < b$ .       | Rule 2 | An inequality of the form $ A  > b$ is<br>equivalent to $A < -b$ or $A > b$ .       |  |  |
| Rule 3                                | An inequality of the form $ A  \le b$ is<br>equivalent to $-b \le  A  \le b$ . | Rule 4 | An inequality of the form $ A  \ge b$ is<br>equivalent to $A \le -b$ or $A \ge b$ . |  |  |

## Exercises

Match each absolute value inequality with an equivalent compound inequality.

| <b>1.</b>   <i>x</i>   < 3   | <b>a.</b> <i>x</i> < –6 or <i>x</i> > 6       |
|------------------------------|-----------------------------------------------|
| <b>2.</b>   <i>x</i>   > 6   | <b>b.</b> $x + 18 \le -12$ or $x + 18 \ge 12$ |
| <b>3.</b>  5 <i>x</i>   ≤ 30 | <b>c.</b> –3 < <i>x</i> < 3                   |
| <b>4.</b>  x + 18  ≥ 12      | <b>d.</b> <i>x</i> < –2 or <i>x</i> > 2       |
| <b>5.</b>   <i>x</i>   < 6   | <b>e.</b> –6 < <i>x</i> < 6                   |
| <b>6.</b>  x  + 2 > 4        | <b>f.</b> $-30 \le 5x \le 30$                 |

Write each absolute value inequality as a compound inequality.

**7.** |x + 7| > 9 **8.**  $|3x| \le 6$  **9.** |x| - 3 > 7 **10.** |2.5x| < 4



#### Problem 3 – Solving absolute value inequalities

Sometimes it is necessary to simplify the absolute value inequality before writing it as a compound inequality.

$$4|x + 1| < 16$$

$$\frac{4|x + 1|}{4} < \frac{16}{4}$$

$$|x + 1| < 4$$

$$-4 < x + 1 < 4$$

$$-4 - 1 < x + 1 - 1 < 4 - 1$$

$$-5 < x < 3$$

You can graph absolute value inequalities to check your answers. Compare the graph of the original (unsolved) inequality with the solution.

 Use the ABSINEQ program to graph 4|x + 1| < 16 and compare its graph with the solution given above. Left side?4abs(X +1) Ri9ht side?16

# Exercises

Solve each inequality. If there is no solution, write no solution. Check your answers.

**1.**  $|x+8| \ge 3$  **2.**  $|x-2| \le 1$  **3.**  $|x-3| \le 4$  **4.** |2x-5| > 9

**5.**  $|2x-3| \ge 7$  **6.** |x+2| > 0 **7.** |3-x| < 9 **8.** -3|x+2| > -12