Name	 	 	
Date	 	 	

Bounce Back

When a ball is dropped from a given height, is there a pattern to the rebound height of the ball? Is there a model that can be used to predict the height of the ball for a particular bounce?

In this activity, you will explore the rebound height of a ball and develop a function that will model the rebound heights for a particular bounce. The model can then be used to predict the height of the ball for any bounce.

You'll Need

- 1 CBR unit
- 1 TI-83 or TI-82 Graphing Calculator
- Ball (a racquet ball works well)

Instructions

- 1. Run the **RANGER** program on your calculator.
- 2. From the MAIN MENU of the RANGER program, select 3:APPLICATIONS.
- 3. Select 1:METERS, then select 3:BALL BOUNCE.
- **4.** Follow the directions on the screen of your calculator. Release the ball. Press the **TRIGGER** key on the CBR as the ball strikes the ground.
- **5.** Your graph should have a minimum of five bounces. If you are not satisfied with the results of your experiment, press ENTER, select **5:REPEAT SAMPLE**, and try again.
- **6.** When you are satisfied with your data, sketch a Distance-Time plot.

Data Collection

 Use → (the right arrow key) to trace to the approximate vertex of the first bounce. Record the coordinates of this point in the table below. Repeat for four more bounces.

Bounce	t	y
1		
2		
3		
4		
5		

- 2. Press ENTER to return to the PLOT MENU. Select 7:QUIT to exit the Ranger program.
- **3.** Press <u>STAT</u>, select **1:Edit** to enter the coordinates of each vertex in Lists 5 and 6. Enter the *t*-coordinates in **L5** and the *y*-coordinates in **L6**.
- Press [2nd] [STAT PLOT]. Select 2:Plot2. Highlight On, and press [ENTER]. This will turn on the scatter plot of the maximum height of each bounce versus time. Select [27] for the Type of plot, L5 for the Xlist, L6 for the Ylist, and the square for the Mark. Press [GRAPH]. Sketch a plot of this data.

Questions

1. What is the equation of the line that would best fit this data?

For the TI-83: Press STAT > and select 4:LinReg(ax+b).

For the TI-82: Press STAT > and select 5:LinReg(ax+b).

This will place the command LinReg(ax+b) on the home screen. Press 2nd [L5] , 2nd [L6] ENTER to find the linear regression. Record the equation of this line:

y = _____

Press Y= and store the equation in Y1 by entering the equation and pressing ENTER.

2. Press GRAPH. Describe how well this line fits the data.

- **3.** Sketch a plot of the graphs in the space provided.
- 4. What is the equation of the exponential function that would best fit this data?

For the TI-83: Press **STAT)** and select **0:ExpReg**.

For the TI-82: Press **STAT)** and select **A:ExpReg**.

This copies the command **ExpReg** on the home screen. Press 2nd [L5] , 2nd [L6] ENTER to find the exponential regression. Record the equation of this function:

y = _____

Press Y= and store the equation in **Y2** by pressing \checkmark , entering the equation, and pressing ENTER.

Press GRAPH. Describe how well this function fits the data.

6. Sketch a plot of the graphs in the space provided.

 Press WINDOW. Change the Xmax value to 10 seconds and the Ymin value to -4 meters. Press GRAPH. Sketch the plot of the graphs in the window at the right.

8. Using each model, predict the maximum possible rebound height of the ball.

Time	Rebound Heights			
(seconds)	linear	exponential		
5s				
6s				
7s				
8s				
9s				

Make a Mathematical Statement

- 1. Which type of function do you think best fits this data?
- **2.** Explain why you made this choice.