## Calculus Tools TI-89 Titanium, TI-92 Plus and Voyage 200™

This user-friendly application extends the build-in power of your TI-89 and TI-92 Plus by providing more specialized functionality. Use Calculus to investigate applications of differentiation, compare numerical integration techniques and explore sequences, series, vector calculus, Fourier series and more!

## Some Calculus Tools features worth showing:

## F2: Deriv (Applications of Derivatives Menu)

Teachers frequently ask if TI-89 or TI-92 performs implicit differentiation. It does not, but this functionality is provided in the **Calculus Tools** App. Other useful tools are: finding the curvature and center of curvature of an expression, finding equation of lines tangent and perpendicular to an expression at a given point and Newton's method.



Press F2: 1 to compute implicit  $2^{nd}$  derivative of  $y^2 + x^2 = 1$  with respect to x



Press F2:2 to find the curvature of  $y = \sin(x)$ 



Press F2:7 to explore Newton's method for  $y = x^2$  with initial guess  $x_0 = 1$ 

## F3: Integ (Numerical Integration Menu)

**Calculus Tools** offers computation of Riemann sums using left, right and midpoint evaluation points, trapezoidal and Simpson's rules as well as a comparison tool that lets the user compare the accuracy of the above methods for a given function for *n* intervals.

| F1+ F2+ F3+ F4+ F5 F6+<br>ToolsA19ebraCalcOtherPr9mIOClean Up |          |          |      |  |
|---------------------------------------------------------------|----------|----------|------|--|
| Window Parameters                                             |          |          |      |  |
| xmin=: <b>-1.</b><br>xmax=: π4<br>ymin=: <b>-</b> .5          | 1        |          |      |  |
| ymax=: <u>1.5</u><br>CEnter=OK                                |          | CESC=CAI | NCEL |  |
| MAIN                                                          | RAD AUTO | FUNC     | 0/30 |  |

Press F1:1 Graph Window to choose the appropriate window parameters.



Press F3:4 to illustrate the trapezoidal rule for f(x) = sin(x) on the interval  $[0, \pi]$  with n=6

| 「「            |             |  |  |
|---------------|-------------|--|--|
| LeftSum       | =1.9541     |  |  |
| RightSum      | =1.9541     |  |  |
| MidSum        | =2.02303    |  |  |
| TrapRule      | =1.9541     |  |  |
| SimpRule      | =2.00086    |  |  |
| Press [ESC]   |             |  |  |
| MAIN RAD AUTO | FUNC ISSUES |  |  |

Press F3:6 to compare various numerical integration techniques and note that Simpson's rule is the most accurate one, since

 $\int_{0}^{\pi} \sin(x) dx = 2$