\qquad
\qquad

Problem 1 - Chord-Chord Product Theorem

Page 1.3 shows circle O and two chords $A B$ and $C D$ that intersect at point X. The lengths $A X$, $B X, C X$, and $D X$ are also given.

1. Move point A to four different points and collect the data in the table below and calculate the products $\boldsymbol{A X} \cdot \boldsymbol{B X}$ and $\boldsymbol{C X} \cdot \boldsymbol{D X}$.

Position	$A X$	$B X$	$C X$	$D X$	$A X \cdot B X$	$C X \cdot D X$
1						
2						
3						
4						

2. What do you notice about the products $\boldsymbol{A X} \cdot \boldsymbol{B X}$ and $\mathbf{C X} \cdot \boldsymbol{D X}$?
3. If two chords intersect in the interior of a circle, then the product of the lengths of the segments of one chord is \qquad to the product of the lengths of the segments of the other chord.

Problem 2 - Secant-Secant Product Theorem

Page 2.2 shows circle O and two chords $A B$ and $C D$ that intersect at point X. The lengths $A X$, $B X, C X$, and $D X$ are also given.
4. Move point A to four different points and collect the data in the table below and calculate the products $\boldsymbol{A X} \cdot \boldsymbol{B X}$ and $\boldsymbol{C X} \cdot \boldsymbol{D X}$.

Position	$A X$	$B X$	$C X$	$D X$	$A X \cdot B X$	$C X \cdot D X$
1						
2						
3						
4						

5. What do you notice about the products $\boldsymbol{A X} \cdot \boldsymbol{B X}$ and $\boldsymbol{C X} \cdot \boldsymbol{D X}$?
6. If two secant segments share the same endpoint outside of a circle, then the product of the lengths of one secant segment and its external segment \qquad the product of the lengths of the other secant segment and its external segment.

Circle Product Theorems

Problem 3 - Secant-Tangent Product Theorem

Page 3.2 shows circle O and two chords $A B$ and $C D$ that intersect at point X. The lengths $A X$, $C X$, and $D X$ are also given.
7. Move point A to four different points and collect the data in the table below and calculate $A X^{2}$ and $C X \cdot D X$.

Position	$A X$	$C X$	$D X$	$A X^{2}$	$C X \cdot D X$
1					
2					
3					
4					

8. What do you notice about the products $\boldsymbol{A} \boldsymbol{X}^{2}$ and $\boldsymbol{C X} \cdot \boldsymbol{D X}$?
9. If a secant segment and a tangent segment share an endpoint outside of a circle, then the product of the lengths of the secant segment and its external segment \qquad the square of the length of the tangent segment.

Problem 4 - Application of Product Theorems

10. Find the value of x.

11. Find the value of x.

12. Find the value of x.

