

Name	
Class	

Problem 1 – Chord-Chord Product Theorem

Page 1.3 shows circle *O* and two chords *AB* and *CD* that intersect at point *X*. The lengths *AX*, *BX*, *CX*, and *DX* are also given.

1. Move point *A* to four different points and collect the data in the table below and calculate the products $AX \cdot BX$ and $CX \cdot DX$.

Position	AX	BX	СХ	DX	AX · BX	CX · DX
1						
2						
3						
4						

2. What do you notice about the products **AX** · **BX** and **CX** · **DX**?

3. If two chords intersect in the interior of a circle, then the product of the lengths of the segments of one chord is ______ to the product of the lengths of the segments of the other chord.

Problem 2 – Secant-Secant Product Theorem

Page 2.2 shows circle *O* and two chords *AB* and *CD* that intersect at point *X*. The lengths *AX*, *BX*, *CX*, and *DX* are also given.

4. Move point A to four different points and collect the data in the table below and calculate the products $AX \cdot BX$ and $CX \cdot DX$.

Position	AX	BX	СХ	DX	AX · BX	CX · DX
1						
2						
3						
4						

- 5. What do you notice about the products $AX \cdot BX$ and $CX \cdot DX$?
- 6. If two secant segments share the same endpoint outside of a circle, then the product of the lengths of one secant segment and its external segment ______ the product of the lengths of the other secant segment and its external segment.

Problem 3 – Secant-Tangent Product Theorem

Page 3.2 shows circle *O* and two chords *AB* and *CD* that intersect at point *X*. The lengths *AX*, *CX*, and *DX* are also given.

7. Move point A to four different points and collect the data in the table below and calculate AX^2 and $CX \cdot DX$.

Position	AX	СХ	DX	AX ²	CX · DX
1					
2					
3					
4					

- 8. What do you notice about the products AX^2 and $CX \cdot DX$?
- **9.** If a secant segment and a tangent segment share an endpoint outside of a circle, then the product of the lengths of the secant segment and its external segment ______ the square of the length of the tangent segment.

Problem 4 – Application of Product Theorems

10. Find the value of x.

11. Find the value of *x*.

12. Find the value of *x*.

