Name	

Date

Triangle Proportionality

Construct the geometric object by following the instructions below, and then answer the questions about the object.

- **1.** Create a triangle and label it $\triangle XYZ$.
- **2.** Create a line parallel to \overline{XZ} through side \overline{XY} .
 - a. From the Construct Toolbar, select Parallel Line.
 - **b.** Move the pencil toward side \overline{XZ} until the message *Parallel to this side of the triangle* appears. Click once.
 - c. Move the pencil toward side \overline{XY} until the message **On this triangle** appears. Click once.
 - **d.** Label the point of intersection of \overline{XY} and the parallel line point *A*.
 - e. From the Points Toolbar, select **Point Of Intersection**.
 - f. Create the point of intersection of the parallel line and side \overline{YZ} . Label this point *B*.

Figure 15.1

3. Measure and label the following distances: \overline{XA} , \overline{YA} , \overline{ZB} and \overline{BY} .

4	Colouloto $\overline{VA}/\overline{AV}$		
4.	Calculate AA/AT.		
	a. From the Measure Toolbar, select Calculate.		
	b. Click on length of <i>XA</i> .		
	c. Click on E .		
	d. Click on length of <i>AY</i> .		
	e. Double-click on =.		
	f. Drag the cursor onto the screen. (A dotted box follows.)		
	g. Click where you want the result to appear.		
	h. From the Label Toolbar, select Comments .		
	i. Change the word result to XA/AY =.		
5.	Repeat the steps in #4 to calculate ZB/BY .		
6.	Record the results below.		
	XA/AY = ZB/BY =		
7.	Alter the triangle by dragging one of the vertices. Record the results below.		
	XA/AY = ZB/BY =		
8.	Do the ratios stay the same?		
9.	Alter the location of the line by dragging point <i>A</i> . Record the results below.		
	XA/AY = ZB/BY =		
10.	Click and drag point Y. Record the results below.		
	XA/AY = ZB/BY =		
11.	Why did the ratios from #8 to #10 change?		
12.	Did the ratios from #9 to #10 change? Why or why not?		
12.	Did the ratios from #9 to #10 change? Why or why not?		
12.	Did the ratios from #9 to #10 change? Why or why not?		

- **14.** Clear the screen.
- **15.** Create a triangle and label it $\triangle ABC$.
- **16.** Bisect $\angle ABC$.
 - a. From the Construct Toolbar, select Angle Bisector.
 - **b.** Move the pencil to vertex *A* until the message *This point* appears. Click once.
 - c. Move the pencil to vertex *B* until the message *This point* appears. Click once.
 - d. Move the pencil to vertex *C* until the message *This point* appears. Click once.
- 17. From the Points Toolbar, select Point Of Intersection.
- **18.** Find the point of intersection of the angle bisector and side AC. Label this point Z.

AB/BC =____

- **19.** Measure and label segments \overline{AZ} , \overline{ZC} , \overline{AB} and \overline{BC} .
- 20. From the Measure Toolbar, select Calculate.
- **21.** Calculate and record the following ratios.

<i>AZ</i> / <i>ZC</i> =	<i>AB/BC</i> =

22. Drag one vertex of the triangle and record the new ratios.

AZ/*ZC* = _____

23. Drag a different vertex of the triangle and record the new ratios.

<i>AZ</i> / <i>ZC</i> =	<i>AB/BC</i> =
-------------------------	----------------

24. How does the ratio of *AZ/ZC* compare to the ratio of *ZB/BC*?

25. What can you conclude about a line that bisects an angle of a triangle?

26. Using the angle bisector tool, bisect $\angle ACB$.

- **27.** Create the point of intersection of the angle bisector and side \overline{AB} and label this point *W*.
- **28.** Measure and label segments \overline{AW} , \overline{WB} , \overline{AC} and \overline{BC} .
- **29.** Calculate and record the following ratios:

AW/WB = _____ *AC/BC* = _____

- **30.** Alter the triangle by dragging one of the vertices.
- **31.** How do the two ratios compare?

32. Does the conclusion in **#25** hold true using a bisector of $\angle ACB$?

33. Do you believe the conclusion would hold true if you bisected $\angle CAB$?