Integer Darts

In this project, you will create an integer dart game. Part of the code has already been written in the "DARTS.8xv" file. You will write the code to generate integer addition, subtraction, multiplication and division problems. You will also write the code to determine the score. Each correctly answered integer question will earn a dart.

Objectives:

Programming Objectives:

- Use variables to store values
- Use the randint() function to generate integers
- Use the print() function to display
- Use a while loop to repeat code.
- Use an if..elif statements to make decisions

Math Objectives:

- Add and subtract integers
- Multiply and divide integers.
- Use Pythagorean Theorem to find distance between two points (May be omitted. To skip, give students Template2 and stop coding after step 13.)

Math Course Connections: Middle School Mathematics

In this project, you will create an integer dart game. Part of the code has already been written in the "DARTS.8xv" file. You will write the code to generate integer addition, subtraction, multiplication and division problems. You will also write the code to determine the score. Each correctly answered integer question will earn a dart.

P PYTHON SHELL	\square
\ggg \# Shell Reinitialized >> \# Running IND_DONE >> from IND_DONE import * $-6-12=1$	

Ask an integer addition, subtraction, multiplication or division problem

PYTHON SHELL
6 娄 $10=60$
correct
darts 2
$32 / 4=9$
sorry 8.0
darts 2
$14+-10=1$
Fns...

Incorrect answer. Correct answer displayed. Doesn't earn a dart.

Correct answer earns a dart.

After 5 questions, the dart board appears. Player throws darts.

Another correct answer, another dart earned.

After all the darts are played, the final score is displayed.

1. Obtain the "DARTS.8xv" from your teacher. Part of the programming code has been coded for you.

Teacher Note:

Give students "DARTS2.8xv" if skipping Pythagorean theorom. End project at step 13.
2. Let's examine the code template.

Math Explorations with Python
TI-84 Plus CE Python Technology

3. Below are examples of all the types of equations your game will create.
a. $-20 /-5$
b. 13--8
c. $-3 *-7$
d. $-7-15$
e. $8^{*}-3$
f. 8 * 3
g. $9+-8$
h. $-48 / 6$
i. $42 / 6$
j. $-1+-18$
k. $3-17$
I. -10 * 4
m. $-8+6$
n. -6--10
o. $72 /-8$
4. Evaluate equation expression above without a calculator. Use your calculator to verify your answers.
5. The first two lines of code will generate two random integers n 1 and n 2 . Initially, they will be any integer between -10 and 10 .

Add the lines:
$\mathrm{n} 1=\operatorname{randint}(-10,10)$
$\mathrm{n} 2=\operatorname{randint}(-10,10)$
**randint -- You can type randint or you can find it in the menu

	-
from time import ${ }^{\text {f }}$	
darts=0	
for i in range(5): $n 1=$ randint $(-10,10)$ n2 $=$ randint $(-10,10)$	
Fns...\| ${ }^{\text {a }}$ A \# \|Tools	

**You can copy and paste lines. Tools $\rightarrow 6$ Copy Line Tools $\rightarrow 7$ Paste Line Below

Teacher Note:

For differentiation enter different boundaries. For example $\mathrm{n} 1=$ randint($-8,12$) generates integers from -8 to 12 .
6. Next, randomly select the operation. The function choice() lets you enter a list of possibilities. It then selects one item from the list. Notice the function has parenthesis (), the list starts and ends with square brackets [].

Add the line:
s = choice(["+"", "-", "‘"", "/"]
**choice -- You can type choice or you can find it in the menu Fns \rightarrow Modul \rightarrow random \rightarrow choice

Teacher Notes:

For differentiation this list can be shortened. For example $s=$ choice(["*', """])
7. If the choice is an addition or subtraction, we'll make a wider range of integers possible. We'll let $\mathbf{n 1}$ and $\mathbf{n 2}$ be anything from -20 to 20. This will require an if statement.

Python uses $==$ to check IF two quantities are equivalent. By itself, the $=$ sign assigns the variable on the left the value on the right. Notice how $==$ and $=$ are used in the statements below.

$$
\begin{aligned}
\text { if } s & == \\
n 1 & =\text { randint }(-20,20) \\
\text { n2 } & =\text { randint }(-20,20)
\end{aligned}
$$

${ }^{* *}$ if \quad Fns $\rightarrow \mathrm{Ctl} \rightarrow$ if
${ }^{* *}$ You can copy and paste lines. Tools $\rightarrow 6$ Copy Line
Tools $\rightarrow 7$ Paste Line Below
8. If the sign was a division sign, you need to ensure you don't divide by 0 . While n 2 is a zero, you will generate a new integer value.

You only need to worry about 0 if the sign is "/".

Therefore, the code will be

$$
\text { elif } \mathbf{s}==\text { " } / ":
$$

while n2 == 0:
n2 $=$ randint(-10,10)
$\begin{array}{ll}{ }^{* *} \text { elif } & \text { Fns } \rightarrow \text { CtI } \rightarrow \text { elif } \\ { }^{* *} \text { while } & \text { Fns } \rightarrow \text { Ctl } \rightarrow \text { while }\end{array}$
(a) EDITOR: DART

CPROGRAMLINE 0013 from time import * from ti_system import 粦

```
darts=0
```

for i in range(5):

* n1 = randint ($-10,10$)
$\because n 2=r a n d i n t(-10,10)$
s=choice(["+", "-", "\#", "/"])
$\because-$
Fns... 1 a A \# Tools| Run \mid Files

EDITOR: DART
 PROGRAMLTNE 0016

```
darts=0
```

for i in range(5):

- n1=randint $(-10,10)$
- n2=randint $(-10,10)$
- s=choice(["+", "-","実", "/"])
 - if $s=="+1$ or $s=={ }^{\prime \prime}$ "":
$\cdots \cdots n 1=r$ andint $(-20,20)$
$\cdots \cdots n 2=r a n d i n t(-20,20)$
Fns... 1 a A \#|Tools/ Run |Files

Math Explorations with Python
ti－84 Plus CE Python Technology
9．If the sign was a division sign，we want to ensure the answer will be an integer． For example，we don＇t want questions like $-12 /-7$ or $-8 / 3$ ．
We want questions like -12 ／-4 or 42 ／－6 because they result in an integer．
Notice the $n 2=$ randint $(-10,10)$ is indented from the while．
The $n 1=n 1 * n 2$ line lines up below the w in the while．

$$
\mathrm{n} 1=\mathrm{n} 1 * \mathrm{n} 2
$$

10．Now to construct the question．We will concatenate，put together，the integers n 1 and n 2 with the string symbol．To put items together，they must all be of the same data type．You will use $\operatorname{str}(\mathrm{n} 1)$ and $\operatorname{str}(\mathrm{n} 2)$ to convert the integers to string．

$$
\begin{aligned}
& \text { prob }=\mathbf{s t r}(\mathbf{n} \mathbf{1})+" \text { " } \mathbf{+ s} \mathbf{+} " \omega+\mathbf{s t r}(\mathbf{n} \mathbf{2}) \\
& * * \operatorname{str}() \quad \text { Fns } \rightarrow \text { type } \rightarrow \text { str }
\end{aligned}
$$

11．You are now ready to ask the user for the answer．Python uses the function input to get information from the user and store it as a string．You will use int（input（））to get information and store it as an integer．
answer = int(input(prob + "= "))
${ }^{* *}$ int（）\quad Fns \rightarrow type \rightarrow int
＊＊input（）Fns \rightarrow I／O \rightarrow input
12．If the user＇s answer matches the evaluated problem，the user will earn a dart． To add one to the darts total you could write darts＝darts＋1．Python has a shortcut however，that is easier to type darts $+=1$ ．Print＂correct＂．

```
if answer == eval(prob):
    darts += 1
    print("correct")
```

**eval Fns \rightarrow I/O \rightarrow eval

Integer Darts
Teacher Notes

EDITOR：DART PROGRAM LINE 0020				\square
＊ $1=r$ andint $(-10,10)$				
$s=\operatorname{choice}(["+", " 11, " \text { "⿻丷木", "/"]) }$$\text { if } s=="+1 \text { or } s==" 1 " \text { : }$				
$\cdots \cdots n 1=r$ andint $(-20,20)$				
\cdots n2＝randint（ $-20,20$ ）				
＊＊elif $5==^{\prime \prime} / 1$ ；				
\cdots ．${ }^{\text {w }}$ wile $\mathrm{n} 2==0$ ：				
$\cdots \cdots \mathrm{n} 2=r$ andint $(-10,10)$				
$\cdots \cdots$ n1＝n13n2				
Fns．．．	a A \＃	Tools	Run	Files

EDITOR：DART

PROGRAM LTNE 0020

Fns．．．	a $A \#$ Tools	Run	Files

```
        EDITOR: DART
        PROGRAMLINE 0021
    P=chogRm LTNE 0021
    *if s=="+" or s=="-":
\cdotsn1=randint (-20,20)
*.*n2=randint(-20,20)
    *elif s=="/":
***while n2==0:
***n2=randint(-10,10)
        n1=n1*n2
    *prob=str(n1)+" "+s+" "+str(n2)
**answer=int(input(prob+"= "))
FFns... a A # Tools
```

```
        EDITOR: DART
        PROGRAM LINE 0024
* n2=randint(-20,20)
elif s=="/":
***while n2==0;
\ldots...n2=randint(-10,10)
* * n1=n1*n2
* prob=str(n1)+" "+s+" "+str(n2)
**answer=int(input(prob+"= "))
* if answer==eval (prob):
***darts+=1
***print("correct")
FFns... (a A #|Tools) Run /Files
```

Math Explorations with Python TI-84 Plus CE Python Technology

Integer Darts
Teacher Notes
13. If the answer isn't true, the only option is false. Instead of using an elif like you did a few steps ago, use an else.

```
else:
    print("sorry, ", eval(prob))
```


Teacher Notes:

If students were given DARTS2.8xv, their program is complete stop here.
DARTS. $8 x v$ is missing the Pythagorean Theorem (distance formula) code, continue.
14. Now to code the scoring section.

The target is centered at $(150,100)$.

If a dart lands at $(200,13.4)$, it is barely inside the target. Find the radius for the largest region. (You can use the scratchpad for calculations.)

Running...

15. If a dart lands at $(130,54.2)$, It is barely inside the middle target. Find the radius for the middle region.
16. If a dart lands at $(140,122.9)$. It is barely inside the smallest target. Find the radius for the smallest region.

17. Fill in the blanks below with words or numbers.

To find the distance the dart lands from the center use \qquad
if the distance is less than or equal to \qquad
give 5 points because it is in the smallest circle elif the distance is less than or equal to \qquad
give 3 points because it is in the middle circle elif the distance is less than or equal to \qquad
give 1 point because it is in the largest circle
18. Now to put the words called pseudo code from step 16 into Python syntax.

```
EDITOR: DART
PROGRAM LTNE 006?
if darts \(\% 2==0\) :
\(\cdots \times x=\) randint \((50,250)\)

Scroll down to the next missing section of code.

\section*{Math Explorations with Python \\ TI-84 Plus CE Python Technology}
19. To find the missing radius for each circle you used the Pythagorean Theorem:
\[
\begin{aligned}
\operatorname{leg} 1^{2}+\operatorname{leg} 2^{2} & =\text { hypotenuse }^{2} \\
(\mathrm{x}-150)^{2}+(\mathrm{y}-100)^{2} & =\text { radius }^{2} \\
\sqrt{(x-150)^{2}+(y-100)^{2}} & =\text { radius }^{2}
\end{aligned}
\]

The distance the dart lands from the center needs to be less than or equal to the radius of the circle.

Python uses **2 instead of \(\wedge 2\) to square numbers. The function sqrt() is used for square root.
```

Add
dist = sqrt((x-150)**2+(y-100)**2)
**sqrt Fns }->\mathrm{ Modul }->\mathrm{ math }->\mathrm{ sqrt

```
20. Your pseudo code found above said:
if the distance is less than or equal to 25:
give 5 points because it is in the smallest circle
elif the distance is less than or equal to \(\mathbf{5 0}\) :
give 3 points because it is in the middle circle
elif the distance is less than or equal to 100:
give 1 point because it is in the largest circle

The dart has a width of 2.5 pixels. This gives 2.5 more pixels to the scoring region. Therefore, add the following:
```

if dist <= 27.5:
score += 5
elif dist <= 52.5:
score += 3
elif dist <= 102.5:
score += 1

```
21. Congratulations! You have typed all the code. Press Run [Trace] to execute the code. If you don't have any errors, you should be able to play the game. If your code has errors, fix the errors, then play the game.
Teacher Notes:
from ti_draw import *
from random import *
from math import *
from time import *
from ti_system import *
```

darts=0
for i in range(5):
n1=randint(-10,10)
n2=randint(-10,10)
s=choice(["+","-","*","/"])
if s=="+" or s=="-":
n1=randint(-20,20)
n2=randint(-20,20)
elif s=="/":
while n2==0:
n2=randint(-10,10)
n1=n1*n2
prob=str(n1)+" "+s+" "+str(n2)
answer=int(input(prob+"= "))
if answer==eval(prob):
darts+=1
print("correct")
else:
print("sorry, ",eval(prob))
print("---------")
print("darts",darts)
print("")
print("You earned", darts,"darts")
sleep(4)
clear()
set_color(255,0,255)
fill_circle(150,100,100)
set_color(0,255,255)
fill_circle(150,100,50)
set_color(255,100,55)
fill_circle(150,100,25)
set_color(0,0,0)
draw_text(148,200,"1")
draw_text(148,150,"3")
draw_text(148,125,"5")
score = 0
draw_text(225, 25, "Toss Dart")
draw_text(225, 45, "(clear)")
for i in range(darts):

```

Integer Darts

\section*{TI-84 Plus CE Python Technology}

Teacher Notes
```

set_color(255,255,255)
fill_rect(0,0,88,23)
set_color(0,0,0)
draw_text(0,25,"darts: " + str(darts-i))
while not escape():
continue
if darts%2==0:
x=randint(50,250)
y=randint(0,200)
else:
x=randint(100,200)
y=randint(50,150)
set_color(255,255,0)
fill_circle(x,y,5)
dist=sqrt((x-150)**2+(y-100)**2)
if dist<=27.5:
score+=5
elif dist<=52.5:
score+=3
elif dist<=102.5:
score+=1
set_color(255,255,255)
fill_rect(0,0,88,23)
fill_rect(225,0,100,25)
set_color(0,0,0)
draw_text(25,25,"score: "+str(score))
draw_text(25,75,"press clear to exit")
while not escape():
continue

```
```

