

| Name  |  |
|-------|--|
| Class |  |

## Introduction to Disjunction and Conjunction

Consider the equation |x| = 5. To solve, you would graph both sides of the equation as functions (y = |x| and y = 5) and mark the solution as the area where the graphs intersect.

The same method can be applied to inequalities. View the graphs and explanations on pages 1.4 through 1.7.

- When is an absolute value inequality a conjunction? A disjunction?
- On the graph, what do the dotted and solid horizontal lines tell you about whether the intersection points are included in the solution?

## **Application of Disjunction and Conjunction**

On the pages 1.10-1.13, write the inequalities as either a conjunction or disjunction and then solve for *x*. Check your solution by graphing using the method described on page 1.3.

**Problem 1:** |2x-3| > 9



**Problem 2:** 
$$\left| \frac{1}{3} x - 10 \right| \le 11$$





## **Real World Application**

One application of absolute value inequalities is engineering tolerance. Tolerance is the idea that an ideal measurement and an actual measurement can only differ within a certain range.

A bolt with a 10mm diameter has a tolerance range of 9.965mm to 10mm, while the hole that it fits into has a tolerance range of 10.05mm to 10.075mm.

How can you express the tolerances of both the bolt and the hole in terms of an absolute value inequality?