Name	

Date

Special Parallelograms

Construct the geometric object by following the instructions below, and then answer the questions about the object.

- **1.** Create a rhombus.
 - **a.** Construct segment \overline{AC} .
 - **b.** Construct the perpendicular bisector of segment \overline{AC} .
 - **c.** Find the point of intersection and label it *X*.
 - d. From the Curves Toolbar, select Circle.
 - e. Move the pointer to point *X* until the message *This center point* appears. Click once.
 - f. Drag to point *C* until the message *This radius point* appears. Click once.
 - **g.** Find the points of intersection between the circle and the perpendicular bisector and label them *B* and *D*.

- h. From the Draw Toolbar, select Hide/Show.
- i. Move the pointer to the circle until the message *This circle* appears. Click once.

- j. Move the pointer to the line \overline{BD} until the message *This line* appears. Click once.
- **k.** Construct segments \overline{AB} , \overline{BC} , \overline{CD} , \overline{AD} , and \overline{BD} .

Figure 10.2

2. Measure and label the following eight angles.

m ∠BAC	m∠DAC	m∠DBC	m∠ABD	m∠ACB	m∠DCA	m∠CDB	m∠BDA

- **3.** Based on your measurements, how are \overline{AC} and \overline{BD} related to the opposite angles of the rhombus?
- **4.** Alter the rhombus.
- 5. Alter the angles two more times and record.

m ∠BAC	m∠DAC	m∠DBC	m∠ABD	m∠ACB	m∠DCA	m∠CDB	m∠BDA

- **6.** Write a statement summarizing how the diagonals are related to the angles of the rhombus.
- 7. Clear the screen.
- **8.** Create a rectangle.
 - **a.** Construct and label segment \overline{AB} .
 - **b.** Construct a line perpendicular to segment \overline{AB} through point A.
 - c. From the Points Toolbar, select Point On Object.
 - d. Place a point on the line through *A* and label it *C*.
 - **e.** Construct a line perpendicular to \overline{AC} through *C*.
 - f. Construct a line parallel to line \overline{AC} through point *B*.

g. Find the point of intersection and label it *D*.

- **h.** Hide lines \overline{CD} , \overline{AC} and \overline{BD} .
- i. Construct segments \overline{AC} , \overline{CD} , \overline{BD} , \overline{CB} and \overline{AB} .

Figure 10.4

9. Measure and label the lengths of \overline{AD} and \overline{BC} and record.

 \overline{AD} = _____ \overline{BC} = _____

- **10.** Alter the rectangle.
- **11.** Measure the lengths again and record. Alter and record again.

 $\overline{AD} = _$ $\overline{BC} = _$

12. What can you conclude about the diagonals of a rectangle?