

Name .	 	
Class .	 	

Problem 1 – An introduction

On page 1.2, find the total number of diagonals in a hexagon by using the **Segment** tool to draw each diagonal.

How many total diagonals are there?
 Check your answer by clicking twice on diagonals = 1 and change the "1" to your result.

Problem 2 – Combinations

On page 2.2, hide all permutations that have the same two letters as another permutation. The ones that remain are *combinations*.

• Complete this sentence:

There are _____ permutations and _____ combinations.

- Write a fraction (using permutation notation) to represent the number of combinations.
- What do you think the denominator represents?

On page 2.4, again hide all permutations that name the same group.

Complete this sentence:

There are _____ permutations and _____ combinations.

- Write a fraction (using permutation notation) to represent the number of combinations.
- What do you think the denominator represents?
- Follow your teacher's directions to derive the formula for finding the number of combinations of *n* objects taken *n* at a time.

 $_{n}C_{r}=$

- Discuss how combinations are different from permutations.
- A teacher puts the names of 28 students into a hat and chooses
 5 to be in a school parade. How many different groups are possible?
- A class has 7 boys and 8 girls. How many groups of 5 with 2 boys and 3 girls can be formed?
- From a standard deck of 52 cards, how many ways can a 7-card hand have exactly 6 red cards and 1 black card?

Problem 3 - Combinations and geometry

Find the total number of diagonals in the hexagon using combinations.

On page 3.3, eight points are drawn on a circle.

 How many triangles can be drawn if each vertex must be one of the eight points?

How many hexagons?

Extension

• Give two different explanations for why ${}_{\scriptscriptstyle n} C_{\scriptscriptstyle n}$ is always equal to 1.

 $\bullet~$ Find $_8C_2$, $_8C_6$, $_7C_3$, and $_7C_4$. Then determine a general rule.