$\qquad$
$\qquad$

## Problem 1 - An introduction

On page 1.2, find the total number of diagonals in a hexagon by using the Segment tool to draw each diagonal.

- How many total diagonals are there? Check your answer by clicking twice on diagonals = $\mathbf{1}$ and change the " 1 " to your result.


## Problem 2 - Combinations

On page 2.2, hide all permutations that have the same two letters as another permutation. The ones that remain are combinations.

- Complete this sentence:

There are $\qquad$ permutations and $\qquad$ combinations.

- Write a fraction (using permutation notation) to represent the number of combinations.
- What do you think the denominator represents?

On page 2.4, again hide all permutations that name the same group.

- Complete this sentence:

There are $\qquad$ permutations and $\qquad$ combinations.

- Write a fraction (using permutation notation) to represent the number of combinations.
- What do you think the denominator represents?
- Follow your teacher's directions to derive the formula for finding the number of combinations of $n$ objects taken $n$ at a time.

$$
{ }_{n} C_{r}=
$$

- Discuss how combinations are different from permutations.
- A teacher puts the names of 28 students into a hat and chooses 5 to be in a school parade. How many different groups are possible? $\qquad$
- A class has 7 boys and 8 girls. How many groups of 5 with 2 boys and 3 girls can be formed?
- From a standard deck of 52 cards, how many ways can a 7 -card hand have exactly 6 red cards and 1 black card? $\qquad$

Combinations

## Problem 3 - Combinations and geometry

- Find the total number of diagonals in the hexagon using combinations. $\qquad$
- How many diagonals can be drawn in a 15-gon?

On page 3.3, eight points are drawn on a circle.

- How many triangles can be drawn if each vertex must be one of the eight points? $\qquad$
- How many quadrilaterals can be drawn this way?
- How many hexagons?


## Extension

- Give two different explanations for why ${ }_{n} C_{n}$ is always equal to 1 .
- Find ${ }_{8} C_{2},{ }_{8} C_{6},{ }_{7} C_{3}$, and ${ }_{7} C_{4}$. Then determine a general rule.

