1. At the local pool, the swim coach conducts a test to determine if there is any association between an athlete's age and their best time swimming the 50 m freestyle. Eight athletes are chosen at random, and their details are shown below.

Athlete	A	B	C	D	E	F	G	H
Athlete's Age (yrs)	12	14	20	17	18	24	10	33
Time (sec)	49.1	48.2	43.1	46.3	44.4	44.2	55.0	45.8

(a) Complete the table of ranks.

Athlete	A	B	C	D	E	F	G	H
Athlete Age rank					4			
Time rank							1	

(b) Calculate the Spearman's Rank Correlation Coefficient.
(c) Interpret this r_{s} in the context of the question.
(d) Suggest why the coach did not use Pearson's Product Moment Correlation Coefficient with his data from the original table.

Mark scheme:
(a)

Athlete	A	B	C	D	E	F	G	H
Athlete Age rank	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{5}$	4	$\mathbf{2}$	$\mathbf{8}$	$\mathbf{1}$
Time rank	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{5}$

(b) $\quad r_{s}=-0.628$
(c) $r_{s}=-0.628$ indicates a negative correlation between a person's age and the best time they swim the 50 m freestyle. The older the athlete gets, the faster their time tends to be.
(d) Examples: Data may not be linear, the SRCC is less sensitive to outliers, there could be outliers, there could be multiple swimmers of different ages with the same swim times.

