Implicit Differentiation

by

Mary Ann Connors

Department of Mathematics
Westfield State College
Westfield, MA 01086

Textbook Correlation: Key Topic

- Derivatives

NCTM Principles and Standards:

- Process Standard
- Representation
- Connections

Implicit Differentiation

Exercises:

1. Given $x^{2}-y^{2}=9$, compute $\frac{d y}{d x}$ using implicit differentiation.

Solution:

Taking the derivative of $x^{2}-y^{2}=9$ with respect to x on the calculator treats y as a constant. Instead, take the derivative of $x^{2}-y(x)^{2}=9$ with respect to x. Why?
Solve for $\frac{d y}{d x}$ by replacing the derivative notation with the variable name "d $y \mathrm{~d} x$."
Evaluate the variable " $d y d x$ " using the solve command. Reproduce the screens illustrated below.

2. Evaluate $\frac{d y}{d x}$ at the point $(5,4)$. Answer: 5/4.
3. Use the TI-89 (TI-92 Plus) to graph the hyperbola $x^{2}-y^{2}=9$ and draw the tangent line at the point $(5,4)$. Did you get the same results?

4. Use implicit differentiation to find an equation of the tangent line to the asteroid $x^{2 / 3}+y^{2 / 3}=4$ at the point $\left(-3(3)^{1 / 2}, 1\right)$. Use the TI-89 (TI-92 Plus) to graph the astroid and draw the tangent line as illustrated in Exercise 3. Did you get the same results?

4. Given $12 x^{2}+3 x y^{2}-7 y=0$, compute $\frac{d y}{d x}$ using implicit differentiation.

