\qquad
\qquad

Part 1 - Introducing Slope Fields

1. Describe your observations when you grab and move the initial condition point on the slope field for $\frac{d y}{d x}=\frac{1}{2} x^{2}\left(3 y-y^{2}\right)$ on page 1.3.
2. The slope field was based on the differential equation $\frac{d y}{d x}=\frac{1}{2} x^{2}\left(3 y-y^{2}\right)$. Confirm the slope of the short segments on the slope field by finding the value of the slope as $(-1,-1),(0,-3),(1,1),(1,-1)$. Circle the slope at that point.

$$
\begin{array}{ll}
\left.\frac{d y}{d x}\right|_{\substack{x=-1 \\
y=-1}}= & \left.\frac{d y}{d x}\right|_{\substack{x=0 \\
y=-3}}= \\
\left.\frac{d y}{d x}\right|_{\substack{x=1 \\
y=1}}= & \left.\frac{d y}{d x}\right|_{\substack{x=1 \\
y=-1}}=
\end{array}
$$

						${ }^{\prime}$					
	:	:	:	:	\checkmark		:	:	:	:	
				-							
		,	;	,		-	\%				
	;	,	;	\%			-	,		,	
	,	,	,	,	1			,			
	-	:		\%							
		\because	\vdots	\vdots	\because	1	1			-	
		;		:	:						
	;	;	;	:	!		: :				
	!	;		!		;	;		-		
		;	:	,	:	-	-				

3. For the differential equation $\frac{d y}{d x}=x+1$, when is the slope of the tangent equal to zero?
4. The slope field to the right depends on what variable(s)? What differential equation could produce this slope field?

Part 2 - DE matching activity

Match the differential equation to its slope field on the next page of this worksheet. Use the strategies developed above to identifying the slope field for a differential equation.

You can check your answers with the slope field on page 4.2. of the TI-Nspire file. Pages 3.13.5 provide a tutorial for using the built-in "Graph Type" of "Differential Equation." On the TINspire, slope fields can be done on a Scratchpad Graph or on a Graph application of your current document. Press menu > Graph Type > Differential Equation. Enter the DE.

You can change the y1 to a different letter, like P for population. However, the independent variable will need to be x. For example, $\mathrm{dP} / \mathrm{dt}=P+t$ will be entered as $\mathrm{y} 1^{\prime}=\mathrm{y} 1+\mathrm{x}$.

, (i) Slope Fields Forever

Match the following differential equations with their slope field. Check using page 4.2.

1. $-\frac{d y}{d x}=0.3 x^{2}$
2. $-\frac{d y}{d x}=1-y$
3. $-\frac{d y}{d x}=\cos x$
4. $-\frac{d y}{d x}=x+y$
5. $-\frac{d y}{d x}=2 x$
6. $-\frac{d y}{d x}=y(3-y)$
7.

$-\quad \frac{d y}{d x}=x^{2}+y^{2}$
8. $-\frac{d y}{d x}=\sin x$
9. $-\frac{d y}{d x}=x-y$
10.
$-\quad \frac{d y}{d x}=-\frac{x}{y}$
11.

A.

B.

C.

D.

E.

F.

G.

H.

I.

J.

K.

