Inverse Functions

by

Mary Ann Connors

Department of Mathematics
Westfield State College
Westfield, MA 01086

Textbook Correlation: Key Topic

- Pre-Requisites: Functions and Equations

NCTM Principles and Standards:

- Process Standard
- Representation
- Connections

Recall that

1. In order for the inverse of $y=f(x)$ to be a function, f must be a one-to-one function.
2. If the point (a, b) is a point on the graph of $y=f(x)$, then the point (b, a) must be a point on the graph of the inverse of f.
3. Geometrically, two functions are inverses of each other if their graphs are reflections of each other with respect to the line $y=x$.
4. If f and g are inverses, then $g(f(x))=f(g(x))=x$.

Exercises:

1. Given the function $\mathrm{f}(x)=x^{3}+5$, solve for the inverse function if it exists. Verify your results.

Solution:

a. Let $y=x^{3}+5$.
b. Interchange x and y. The inverse relation is $x=y^{3}+5$.
c. Solve for y. Use the solve command on the Home screen.

$y=(x-5)^{1 / 3}$ is the inverse relation. Is it a function?
To validate the result graphically, enter $\mathbf{y} \mathbf{1}(\mathbf{x})=\mathbf{x}^{\mathbf{3}}+\mathbf{5}, \mathbf{y} \mathbf{2}(\mathbf{x})=(\mathbf{x}-\mathbf{5})^{1 / 3}$, and $\mathbf{y 3}(\mathbf{x})=\mathbf{x}$ in the $\mathbf{Y}=$ editor. Check to see if y1 and y2 are reflections of each other with respect to the dotted line $\mathrm{y} 3(\mathrm{x})=\mathrm{x}$. Use $\mathbf{F 3}$ (Trace) to check reflection points. The screens below illustrate $(1,6)$ on $y 1$ and $(6,1)$ on $y 2$. Recall that after pressing F3 you can type in the the x coordinate and press enter.

Check the Table to validate numerically.

To verify the result analytically calculate $\mathrm{y} 1(\mathrm{y} 2(\mathrm{x}))$ and $\mathrm{y} 2(\mathrm{y} 1(\mathrm{x}))$ on the HOME screen. If both yield x as a result, then the functions are inverses as illustrated below.

2. Given the function $\mathrm{f}(x)=(2 x-7)^{1 / 2}$, solve for the inverse function if it exists. Verify.

Solution:

a. Let $y=(2 x-7)^{1 / 2}$ or $y=\sqrt{(2 x-7)}$.
b. Interchange x and y. The inverse relation is $x=(2 y-7)^{1 / 2}$.
c. Solve for y. You can use the solve command on the Home screen.

Answer: $y=\left(x^{2}+7\right) / 2, x \geq 0$ is the inverse relation.
Is it a function?
Why is it necessary to have a restricted domain?
Is there another correct solution?
To validate the result graphically, enter $\mathbf{y} 1(\mathbf{x})=(2 \mathbf{x}-7)^{1 / 2}, \mathbf{y} 2(\mathbf{x})=\left(\mathbf{x}^{\mathbf{2}}+\mathbf{7}\right) / \mathbf{2} \mid \mathbf{x} \geq \mathbf{0}$, and $\mathbf{y 3}(\mathbf{x})=\mathbf{x}$ in the $\mathbf{Y}=$ editor. Check to see if y 1 and y 2 are reflections of each other with respect to the dotted line $\mathrm{y} 3(\mathrm{x})=\mathrm{x}$. Use $\mathbf{F} \mathbf{3}$ (Trace) to check reflection points. The screens below illustrate $(1,6)$ on y 1 and $(6,1)$ on y 2 . Recall that after pressing F3 you can type in the x coordinate and press enter.

Check the Table to validate numerically.

To validate the result analytically calculate $\mathrm{y} 1(\mathrm{y} 2(\mathrm{x}))$ and $\mathrm{y} 2(\mathrm{y} 1(\mathrm{x}))$ on the HOME screen. If both yield x as a result, then the functions are inverses as illustrated below.

3. Consider the function $\mathrm{f}(x)=5 x-x^{3}$. What is the inverse relation? Is it a function? Verify your results.

Solution:

a. Let $y=5 x-x^{3}$.
b. Interchange x and y. The inverse relation is $x=5 y-y^{3}$.
c. Solve for y. You can use the solve command on the Home screen.

In this case, y cannot be expressed as a function of x. Investigate graphically. Enter $\mathbf{y} \mathbf{1}(\mathbf{x})=5 \mathbf{x}-\mathbf{x}^{3}$ and $\mathbf{y} \mathbf{3}(\mathbf{x})=\mathbf{x}$ in the $\mathbf{Y}=$ Editor and GRAPH in a standard window.

Clearly, y1 is not a one-to-one function. Its inverse relation is not a function. To graph the inverse, press $\mathbf{2}^{\text {nd }}, \mathbf{F 1}$ for F6 (Draw). Select 3:DrawInv. The DrawInv command will appear on the entry line of the Home Screen. Type $\mathbf{y} \mathbf{1}(\mathbf{x})$ and press ENTER. The inverse relation will appear on the graph screen as shown below.

4. Find ways to restrict the domain of $\mathrm{f}(x)$ so that the inverse will be a function.

Additional Exercise:

Use the procedures described above to explore the inverse of $\mathrm{f}(x)=e^{x}$

