Name:

Geometry: Concurrent Lines, Medians, and Altitudes

altitude	centroid	circumcenter	concurrent
incenter	median	orthocenter	point of concurency

Part 1: Vocabulary (pages 256-259)

1. When three or more lines intersect in one point, they are \qquad
2. The point at which the lines intersect is the \qquad .
3. The point of concurrency of the perpendicular bisectors of a triangle is called the \qquad of the triangle.
4. The point of concurrency of the angle bisectors of a triangle is called the \qquad of the triangle.
5. $\mathrm{A}(\mathrm{n})$ \qquad of a triangle is a segment whose endpoints are a vertex and the midpoint of the opposite side.
6. In a triangle, the point of concurrency of the medians is the \qquad -
7. $\mathrm{A}(\mathrm{n})$ \qquad of a triangle is the perpendicular segment from a vertex to the line containing the opposite side.
8. The lines containing the altitudes of a triangle are concurrent at the \qquad of a triangle.

Part 2: Circumcenter of the Triangle

 - Open THM5PT6.- Drag point C to six different locations and copy the lengths of segments $\overline{A D}, \overline{B D}$, and $\overline{C D}$ in the table below. The hand tool is already activated when you open THM5PT6. These lengths measure the distance from the circumcenter to the vertices of the triangle.

Location	1	2	3	4	5	6
Length $\overline{\mathrm{AD}}$						
Length $\overline{\mathrm{BD}}$						
Length $\overline{\mathrm{CD}}$						

Explorations:

9. The perpendicular bisectors of the sides of a triangle are concurrent at a point \qquad from the vertices.

Part 3: Incenter of the Triangle

- Open THM5PT7.
- Drag point B to six different locations and copy the lengths of segments $\overline{D E}, \overline{D F}$ and $\overline{D G}$ in the table below. The hand tool is already activated when you open THM5PT7. The lengths of segments $\overline{D E}, \overline{D F}$ and $\overline{\mathrm{DG}}$ are the distance from the incenter to the sides of the triangle. This is a distance from a point (the incenter) to a line (sides of the triangles).

Location	1	2	3	4	5	6
Length $\overline{\mathrm{DE}}$						
Length $\overline{\mathrm{DF}}$						
Length $\overline{\mathrm{DG}}$						

Explorations:

10. The bisectors of the angles of a triangle are concurrent at a point \qquad from the sides.
11. Turn to page 257 in your book and copy Theorem 5-6.

Theorem 5-6
\qquad
12. Turn to page 257 in your book and copy Theorem 5-7.

Theorem 5-7
13. Finding the Circumcenter: Find the center of the circle that you can circumscribe about the triangle with vertices $(0,0),(-8,0)$, and $(0,6)$.

Part 4: Centroid of a Triangle

- Open THM5PT8.
- Drag point \mathbf{B} to six different locations and copy the lengths of segments $\overline{A D}, \overline{D F}, \overline{A F}$, and $A D / D F$ in the table below. The hand tool is already activated when you open THM5PT8. These lengths measure the distance from the centroid to the midpoints of the triangle.

Location	1	2	3	4	5	6
Length $\overline{\mathrm{AD}}$						
Length $\overline{\mathrm{DF}}$						
Length $\overline{\mathrm{AF}}$						
$\mathrm{AD} / \mathrm{DF}$						

Explorations:

14. In THM5PT8 when you move point \mathbf{B}, what calculation remains constant?
15. If $\frac{A D}{A F}=\frac{2}{3}(\approx .67)$, then $A D=$ \qquad .
16. The medians of a triangle are concurrent at a point that is two thirds the distance from each vertex to the
\qquad of the opposite side.
17. Turn to page 258 in your book and copy Theorem 5-8 (including picture in the box provided).

Theorem 5-8 \qquad
\qquad
\qquad
18. Finding Lengths of Medians: D is the centroid of $\triangle A B C$ and $D A=8$. Find DF and AF .

Part 5: Centroid of a Triangle

- Open THM5PT9.
- Point D is the Orthocenter of the triangle.

Explorations:

19. Turn to page 258 in your book and copy Theorem 5-9.

Theorem 5-9
20. What is an acute triangle?
21. What is a right triangle?
22. What is an obtuse triangle?
23. Using THM5PT6, THM5PT7, THM5PT8, and THM5PT9 fill out the following table. Think about acute, right, and obtuse triangles and use inside, on, or outside to describe the locations of the circumcenter, incenter, centroid, and orthocenter. You will have to open each file and create the three types of triangles by moving the vertices of your triangle.

	Circumcenter	Incenter	Centroid	Orthocenter
Acute Triangle				
Right Triangle				
Obtuse Triangle				

Part 6: Circles

24. Using the figure to the right, points \mathbf{Q}, \mathbf{R}, and \mathbf{S} are
\qquad from point \mathbf{C}, the
\qquad of the triangle. The circle is circumscribed about the triangle.
25. Using the figure to the right, points \mathbf{X}, \mathbf{Y}, and \mathbf{Z} are

\qquad from point \mathbf{I}, the _ of the triangle. The circle is inscribed in the triangle.

