Calculus and the TI-89

By John F. Mahoney

The TI-89's symbolic capacities make it ideal for teachers and
students of calculus. Here are some examples of how both can
use the calculator to understand calculus better.

A. Introduction

The calculator’s limit computation capabilities enable users to
calculate derivatives using the definition of derivative:
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When the calculator is
"asked” for the derivative of
a quotient, it doesn't use the
standard form:

To get the standard form,
consider using the common
denominator function:

Here's a way to illustrate
the chain rule:

B. Implicit Functions
The TI-89 can graph implicit
functions. Consider the
curve X2 + xy + y2 =27
which was the subject of a
1994 Advanced Placement
problem. To graph the
curve on the TI-89, change
the Graph Mode to 3D,
press Y= and enter the
curve as

Z1= X2 + Xy +y2 - 27.

Press F1 Tools, then 9 for
Format, and set Coordinates
to Rect, Axes to Box, Labels
On, and Style to Implicit
Plot.

4 Eightysomething!
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Then press Enter to save
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these settings. You can
either press Zoom 6: Std and
wait about 90 seconds for
the graph to appear, or you
can choose your own
settings.

D

In the top figure, the y-axis is
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horizontal, the z-axis is
vertical, and the x-axis is
coming out at you in
standard form. The graph
can be rotated and animated

by using the arrow keys. |
rotated the graph to look
“down"” the z-axis:

Here, the point (3, -6) is a
point where the tangent line
to the curve is parallel to the
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Whereas the point (6, -3) is a 1
point where the tangent line
g L

to the curve is parallel to the
y-axis:
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How did we arrive at those two points? We can use implicit
differentiation to do so. In order for the calculator to do implicit

differentiation, one must first “tell”

it that y is a function of x.

Thus the equation of the curve is typed in with y(x) in place of y.
Then the expression is differentiated with respect to x:
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One can solve for dy/dx by
first subtracting y(x) and 2x
from both sides of the
equation as follows:

And then dividing both sides
by (2:y(x) + ).
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Here, one can see that the tangent line to the curve will be
horizontal when the numerator = 0, or when y = -2x.
The tangent line to the curve will be vertical when the

denominator = 0, or when WWTTH
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2y = -x. We can solve the

equation of the original wcolue(xZ+xou+u =27y b
curve when y = -2x for x =3 ar x= -3
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Finally, this equation can be
put into the standard form of
an ellipse as follows:
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C: Maximum-Minimum

A typical hard maximum-minimum problem in calculus involves
finding the volume of the largest right circular cone inscribed in
a sphere of radius r. What is hard, for students, about this
problem is both the set-up and the algebra involved in finding
derivatives and their zeros. The TI-89 can’t help with the set-
up, but it can certainly help with the rest of the problem. This
will allow students (and their teachers) to concentrate on
exploring ways to set up problems — rather than allowing
themselves to always get bogged down in the algebra. As a
bonus, teachers can use this tool to quickly check the
consistency of work of students who set up problems
incorrectly.

Consider the following diagram showing a right circular cone
inscribed in a sphere:

The radius of the sphere
is r. The radius of the
cone is b. The
height of the
cone is r+a
where a is the
distance from
the center of
the base of

the cone to

the center

of the sphere.
Clearly, because
we are dealing
with a right circular
cone, there is a
Pythagorean relationship
between a, b, and r.

The volume of the cone is V =%_ 0. b2 (r+a) where a2+h2 = r2,

Here, we first solve

aZ2+b2 = r2 for a. The solver
gives both a positive and a
negative value for a. We
then substitute the positive
value for a (in terms of b and
r) into our expression for the
volume of the cone using
the “with operator” — the
vertical bar. This gives us an
expression for the volume of
the cone in terms of a single
independent variable, b, and
r — the radius of the sphere.

Now we differentiate our
expression for the volume of
the cone with respect to b:

We find the three zeros of
the derivative:

We then find the second
derivative with respect to

b — note the ,b,2) in the
command line. [The second
derivative is quite a
complicated expression!]

Now we evaluate the second
derivative (above) at each of
the critical points. It
becomes obvious that the
last critical point,

b :ZT\/7 t (the only positive

one), gives a negative
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second derivative and thus it will be the value of b which
produces the cone of maximum volume.

We then go back and
evaluate our expression for
the volume of the cone at
the critical point

b:_zé/Tr

to find the actual volume of
the cone in terms of r. We
can simplify our answer by
finding the value of the
volume when r = 1 in order
to make the conclusion that
the maximum volume of the

cone is %’T r3 which
turns out to be % of the

volume of the sphere!
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