Name \qquad
Class \qquad
Introduction
Linear approximation uses a tangent line to estimate values of a function near the point of tangency. For this reason, linear approximation is also referred to as tangent line approximation.

On the graph to the right, let the graph let a be the point where the tangent touches the graph, $L(x)$ be the tangent and $f(x)$ be the function.
On the picture, the point x is the x coordinate of the vertical line.

Draw a vertical line from a to the x-axis.

Draw horizontal lines from $a, f(x)$, and the intersection of the vertical line with the tangent line.
At this stage, you should have three points on the y-axis: $f(a), f(x), L(x)$. Label them.

- Which of these points can you use to represent the estimate, or linear approximation, of $f(x)$ near a ?
- How can you use these labels to represent the error associated with this estimate?
- Is this estimate an overestimate or an underestimate? Explain.

Investigating linear approximation

On the graph at the right, $\mathbf{f}(x)=x^{3}-3 x^{2}-2 x+6$ is shown. The tangent line at $a=-1$ is $L(x)=7 x+11$. The trace object q is at the point $(0.2,5.488)$.

If you draw a vertical line from the x-axis through this point, you will get the point $p=(0.212658,12.4886)$.

The distance $p q=7.039997$ or 7.04.

- What numerical value represents the linear approximation of $\mathbf{f 1}(q)$ near $a=-1$?
- What numerical value gives the error associated with this linear approximation?

Linear Approximation

- What is the true value of $\mathbf{f 1}(\mathrm{q})$?
- Is this an underestimation or an overestimation?

Repeat the process above and complete the table below for the x-values given.

	\boldsymbol{p}	distance $\boldsymbol{p q}$	linear approx. of $\mathbf{f 1 (q)}$	real value of $\mathbf{f 1 (q)}$	error	underestimation/ overestimation
$x=-0.2$						
$x=-0.5$						
$x=-0.6$						
$x=-1.2$						

- At what x-value(s) is the error less than 0.5 ?
- What do you notice about graph of the function and the graph of the tangent line as you get close to the point of tangency?
- Based on your observations, explain why the relationship between a tangent and a graph at the point of tangency is often referred to as local linearization.

Typically, you will have a function but not a graph to find the linear approximation.

- Find the derivative of $\mathbf{f}(x)=x^{3}-3 x^{2}-2 x+6$. Evaluate it at $x=-1$. This is the slope of the line. Use the slope and the point $(-1,4)$ to get the equation of the line.
- The tangent line $L(x)=$
- What is $L(-1.03)$? What does this value represent?
- Calculate the error with this estimate.

Underestimates versus overestimates

Graph the function $f 1(x)=x^{3}-3 x^{2}-2 x+6$ and place a tangent line $a=1$.

- If you were to draw a point p on the graph to the left of $a=1$, is the approximation an overestimate or an underestimate?
- If you draw a point p on the graph to the right of $a=1$, is the approximation an overestimate or an underestimate?
- What is the significance of the point of tangency?
- Generalize your findings about when a linear approximation produces an overestimate and when it produces an underestimate.

Finding intervals of accuracy

Suppose we have the following question.
How close to -1 must x be for the linear approximation of $f 1(x)=x^{3}-3 x^{2}-2 x+6$ at $a=-1$ to be within 0.2 units of the true value of $f 1(x)$?
Graph $\mathbf{f} \mathbf{2} \mathbf{=} \mathbf{f 1} \mathbf{+ 0 . 2}$ and $\mathbf{f} \mathbf{5}=\mathbf{f 1} \mathbf{- 0 . 2}$ with f 1 and the tangent line.

- How would you use the graphs to answer the question posed in this problem?
- How close to -1 must x be for the linear approximation of $f 1(x)=x^{3}-3 x^{2}-2 x+6$ at $a=-1$ to be within 0.2 units of the true value of $\mathbf{f 1}(x)$?

Now we want to ask the same questions when the point of tangency is at $\mathrm{a}=1$.

- How does this situation differ from the one we just had?
- Use graphical or algebraic methods to find an interval that ensures the linear approximation at $a=1$ is accurate to within 0.2 units of $f 1(x)$.

