

Summarizing Distributions of Univariate Data Topics 5 through 8 summarize the distribution of the data shown in Chapter 1. This chapter answers questions such as What is the center of the data and how much does the data vary from the center value? and How does changing units affect the summary measures? Boxplots are used to provide a schematic view of a five-number summary.

Topic 5—Measures of Center and Spread

The most common measures of the center of a distribution are the mean and the median. The measures of spread are range, interquartile range, and standard deviation. These measures are given for data collected in a list or grouped in a frequency table.

Using the Data List

Example: Use the list of building heights from Topic 1 (list **phily** in folder **BLDTALL**).

- From the Stats/List Editor, press F4 Calc and select 1:1-VarStats.
- 2. Select List: phily with Freq: 1 (screen 1).

	F1+ F2+ F3+ F4+ F5+ F6+ F7+ ToolsPlotsListCalcIDistriTestslints - 1-Var Stats		
	e List:	Phily -	
	2 Freq:	1	
	4 Category List:		
	Include Categories:	0	
	入 <u>CEnter=OK</u>	(ESC=CANCEL)	
(1)	list3=()		
(1)	BLDTALL RAD AUTO	I FUNC	

3. Press ENTER to display screen 2.

	F1-	× ×-	1-Var Stat	s	
	рh	Σ Σx	=539. =129	.208 41.	,3
	40	Σx2 Sx	=7.52 =153.	:311E6 .964	
	40 47	σx D	=150. =24.	.722	
	450	MinX ↓ Q1X	=400. =426.		
(2)	Phi	<u>Enter</u>	RAD AUTO	FUNC	1/5

F1-	1-Var Stats		
ph tox	=150.722	3	
E 0	=24.	r P	
DØ] MinX	=400.		
40 018	=426.		
401 Medx	=489.		
471 038	=578.5		
451 Max8	=945.		
411 Σ(X-3)2	=545214.		
TI CENTOREDK	<u> </u>		
Phr. Cancer-and		<u></u>	
BLDTALL RAD	AUTO FUNC	1/5	

Measures of Center

Mean = $\bar{x} = \frac{\sum x}{n} = 12941/24 = 539.208$ feet for the data set, **phily** list of building heights (the first value in screen 2).

This is the balance point of the dotplot from Topic 2, shown below. Think of the dots as bowling balls of equal weight.

Median = MedX = 489 feet is the middle value $(50^{th} \text{ percentile})$. Twelve values are below and 12 values are above 489 (the fifth value in screen 3). **Note:** $\overline{x} = \mu$, for this case, since you are calculating the population mean of all 16 tall buildings 400 feet or taller in Philadelphia, PA.

Measures of Spread

Measures of spread are:

Range = maxX - minX = 945 - 400 = 545 feet.

Interquartile Range = $IQR = Q_3 - Q_1 = 578.5 - 426 = 152.5$ feet.

Note: The Interquartile Range spread of 152.5 feet covers the middle 50% of the data, with 25% or six values below and 25% or six values above, as shown in the dotplot from Q_1 to Q_3 .

39

1.5 * IQR = 1.5 * 152.5 = 228.75 feet is used to measure the distance from the quartiles, Q_1 and Q_3 , to detect possible outliers. From the dotplot with $Q_3 x = 578.5$ feet (with 75% of the values below it and 25% or six values above it) measure 573.5 + 228.75 = 807.3 feet. Only two buildings are taller than 807 feet and are identified as possible outliers at 848 and 945 feet. There are no possible outliers to the left of Q_1 .

Standard Deviation

The *standard deviation* is a measure of the deviations from the mean, and its value can be highly influenced by values a long way from the mean. The following table compares values by dropping the largest value (945) from the list.

	<i>n</i> = 24	<i>n</i> = 23	Difference
Mean	539	522	17
Median	489	488	1*
Range	545	448	97
IQR	153	155	2*
s _X	154	130	24
σ χ	151	127	24

* Robust Measures: Values that do not change much by the presence of extreme values are called *robust*. Notice that the median and interquartile ranges are more robust than the mean, range, and standard deviation.

$$s_x$$
 = sample standard deviation = $\sqrt{\frac{\sum(x-\bar{x})^2}{n-1}} = \sqrt{\frac{545214}{23}}$
= 153.96 ft.

$$\sigma_x$$
 = population standard deviation = $\sqrt{\frac{\Sigma(x-\mu)^2}{n}} = \sqrt{\frac{545214}{24}}$
= 150.72 ft.

Note: If your list was a random sample of values from a population, you could use s_x to estimate σ_x .

The standard deviation is a measure of the spread from the mean, and several intervals from the mean are given below the dotplot.

Topic 6—Measures of Position: Percentiles and Quartiles, Standard Scores (*z* scores)

Example: Use the building heights in Philadelphia, PA stored in list **phily** and folder **BLDTALL** in Topic 1.

Finding Standard Scores (z scores)

Standard scores (z scores) measure the number of standard

deviations a value is from the mean, $z = \frac{x - \mu}{\sigma}$.

1. Press $\boxed{\text{HOME}}$ to perform Home screen calculations. If there are computations on the Home screen from previous work, press $\boxed{\text{F1}}$ **Tools** and **8** \downarrow $\boxed{\text{CLEAR}}$ $\boxed{\text{HOME}}$ to clear the screen.

From Topic 5 you found the mean = **539.2**, and the standard deviation = **150.7**. Use these values to find the *z* score of the smallest (400 feet) and the tallest (945 feet) buildings in your list.

- 2. Type (400 539.2)/150.7 and press ENTER.
- 3. Type (945 539.2)/150.7 and press ENTER (screen 4).

Smallest Building:	z = (400 - 539.2)/150.7 =923689
Largest Building:	<i>z</i> = (945 - 539.2)/150.7 = 2.69277

The smallest value is less than one standard deviation below the mean, and the largest value is almost three standard deviations above the mean.

Note: The difference in these *z* scores is another indication of the non-symmetric nature of the distribution (the data is skewed to the right). This is clearly shown below the dotplot in Topic 5.

Percentiles and Quartiles

The *percentile* of a score indicates what percent of the data values are smaller in magnitude. Not all textbooks or computer programs use the same procedure for finding percentiles, but all methods give similar answers as the sample size increases.

 ${\bf 25}^{\rm th}$ **Percentile** = P_{25} = Q_1 = 426 feet in the 1-VarStats value of Topic 5 (screens 2 and 3) with 25% of 24, or six values below it.

50th **Percentile** = P_{50} = Med = 489 feet in Topic 5 with 50% of 24, or 12 values below (and 12 values above).

75th **Percentile** = $P_{75} = Q_3 = 578.5$ feet in Topic 5 with 75% of 24, or 18 values below it (and six values above).

Finding the 90th Percentile

Example: Copy list **phily** data into **list1**. Sort **list1** in ascending order.

- 1. Return to the Stats/List Editor using [APPS].
- 2. Select Stats/List Editor and press ENTER.
- 3. Highlight the **list1** heading, paste or type **phily** and press <u>ENTER</u> (screen 5).

To sort phily data in ascending order, press F3 List,
 2:Ops and then 1:Sort List. Make sure the list is list1 and press ENTER (screen 6).

- 5. Calculate 90% of *n*, or .90 * 24 = 21.6. On the Home screen, enter **.90** \times **24** and then press ENTER to display the top of screen 7.
- 6. Use **22**, since 21.6 values are below 22. (If the result is a decimal, round up.)
- On the Home screen, paste list1 and then press
 [2nd] [1] 22 [2nd] [1].
- 8. Press ENTER for **792** (screen 7).

	F1+ F2+ ToolsPlots	F3+F4+F ListCalcDi	5+ F6+ F7- str/Tests/ints	
	phily	list1	list2	list3
	585	585	0	
	405	405	15	
	400	400	4	
	475	475	0	
	450	450	3	
	412	412	1	
(-)	<u>list1[</u>	1]=585		
(5)	BLDTALL	RAD AUTI	I FUNC	2/ 4

	F1+ F2+ F3+ F4+ F5+ F6+ F7+ Too1sP1otsListCa1cDistr TestsInts			
	phily	list1	list2	list3
	585	400	0	
	405	400	15	
	400	405	4	
	475	412	0	
	450	416	3	
	412	417	1	
	list1[]	1]=400		
(6)	BLDTALL	RAD AUTI	I FUNC	2/ 4

	F1+ F2+ F3+ F4+ F5 F6 ToolsAlgebraCalcOtherPrgmIOClear	, nb
	■.9·24	21.6
	list1[22]	792
	■ .75·24	18.
	list1[18]+list1[19]	
	- 2.	
		578.5
(7)	(list1[18]+list1[19])/	2.
(\prime)	BLDTALL RAD AUTO FUNC	4/30

Finding the 75th Percentile

Example: Copy list **phily** data into **list1**. Sort **list1** in ascending order.

1. Calculate 75% of *n*, or .75 * 24 = 18. On the Home screen, enter $.75 \times 24$ and then press ENTER to display the middle of screen 8.

Since this is an integer, you will take the average of the 18^{th} and 19^{th} values so type (list1[18] + list1[19])/2 and press [ENTER] (screen 8), which agrees with Q_3x of **1-VarStats** in Topic 5, screen 3.

Finding the Percentile Value of a Number

Example: What percentile is the height 792 feet?

- 1. Return to the Stats/List Editor using APPS.
- 2. Select Stats/List Editor and press ENTER.
- 3. Observe that in **list1** (with the data in order), **792** is the 22^{nd} value (screen 9). Thus, there are 21 values below it for 21/24.0 = .875 = 87.5% or the 87.5 percentile.

	F1+ F2+ F3+ F4+ F5 F6 ToolsAl9ebraCalcOtherPr9mi0Clea	- ue
	■.9·24	21.6
	■list1[22]	792
	■ . 75·24	18
	_list1[18]+list1[19]	
	- 2	
		578.5
(0)	(list1[18]+list1[19])/	2
(o)	BLDTALL RAD APPROX FUNC	4/30

43

	F1+ F2+ F3+ F4+ F5+ F6+ F7+ Too1sPlotsListCa1cDistr TestsInts			
	phily	list1	list2	list3
	792 572	700 739	848 945	22 23
	739 572	792 848	946	24
	417	945		
(0)	() list1[22]=792			
(9) BLDTALL RAD AUTO FUNC		27.5		

Topic 7—Boxplots (or Box-and-Whisker Plots)

In Topic 5, screen 3, you used 1-VarStats on list **phily** for the following five-number summary:

MinX = 400	Q ₁ = 426	Med = 489	Q ₃ = 578.5	MaxX = 945 ft
------------	----------------------	-----------	------------------------	---------------

These five values define a boxplot as follows. From the Stats/List Editor and folder **BLDTALL**:

- 1. Set up Plot 1 with F2 Plots, 1:PlotSetup.
- 2. Highlight **Plot 1**, press **F1 Define**, and select Plot Type: **BoxPlot** and X List: **phily** (screen 10).
- 3. Press ENTER to return to the Plot Setup screen.

	Defi	Define Plot 1		
	Plot Type	Box Plot >		
	X	Phily		
	1 ×			
	Batt 1042 et 26.225 Use Exec and Cate	aries? NO +		
	· :>e:			
	• (J>48^77			
	Entor-OK	C KC		
(10) <u>CENTERFERE</u> CHRISES				
/	ase vinne 7 to oren	Chartes		

- 4. Highlight **Plot 2**, press **F1 Define**, and select Plot Type: **Mod Box Plot**, Mark: **Box**, and X List: **phily** (screen 11).
- 5. Press ENTER to return to the Plot Setup screen. Note that two plots have check marks in the left margin (screen 12).
- 6. Press F5 ZoomData and then press F3 Trace, with Med = 489 (screen 13).
- 7. Use ⊙ and ⊙ to find the other values of the five-number summary.

The middle box has the middle 50% of the data, while each whisker has 25% of the data. The right whisker is much longer than the left because of the positive skewness. Even the middle 50% is not symmetrical, since the median is not in the middle of the box.

 Press ⊙ to move the flashing cursor to the modified boxplot. The P2 in the upper right corner represents Plot 2 (screen 14).

Notice that the right whisker of the plot stops at 792 feet. This is the third largest value. The two boxes at **x** = **848** and **maxX** = **945** indicate the two possible outliers (as identified to the right of Q_3 + **1.5** * IQR in the dotplot of Topic 5). No outliers are identified to the left of Q_1 - **1.5** * IQR.

There is no need to construct both boxplots. You will use the modified boxplot in this book because it shows more information.

The modified boxplots are also very helpful in comparing different distributions, as will be shown with Parallel Boxplots in Topic 9.

Note: If the x-axis is in the way, press ● [WINDOW] and set ymin = 1 and ymax = 10, and then press ● [GRAPH] and F3 Trace.

Topic 8—The Effect of Changing Units on Summary Measures

Changing Units with y = kx + a

Example: Change the following sample of body temperatures of 20 adults measured in degrees Fahrenheit to degrees Celsius.

98.0 99.2 97.2 98.6 99.0 99.7 97.2 97.7 98.6 98.2 97.0 99.1 99.0 99.2 98.7 99.3 99.6 99.4 99.2 97.6

°C =
$$\frac{5}{9}$$
 (°F - 32) = $\frac{5}{9}$ °F - $\frac{160}{9}$
so in this case $k = \frac{5}{9}$ and $a = \frac{-160}{9}$

- 1. For measures of position (median and mean):
 - a. Med y = k * Med x + a

b.
$$\bar{y} = \frac{y_1 + y_{2+} \dots y_n}{n} = \frac{(kx_1 + a) + (kx_2 + a) + \dots (kx_n + a)}{n} = \frac{k(x_1 + x_2 + \dots x_n)}{n} + \frac{na}{n} = k\bar{x} + a$$

Results: Measures of position x becomes k * x + a

2. For measures of spread (interquartile range and standard deviation):

a.
$$IQRy = Q_{3}y - Q_{1}y = (kQ_{3}x + a) - (kQ_{1}x + a) = k(Q_{3}x - Q_{1}x) = k * IQRx$$

b. $s_{y} = \sqrt{\frac{[(kx_{1} + a) - (k\bar{x} + a)]^{2} + \dots [(kx_{n} + a) - (k\bar{x} + a)]^{2}}{n-1}} = \sqrt{\frac{k^{2} \sum (x - \bar{x})^{2}}{n-1}} = k * s_{x}$

Results: Measures of spread W becomes k * W

- 3. Press 2nd APPS to return to the Stats/List Editor.
- 4. Clear all data in **list1**, **list2**, **list3**, and **list4** by highlighting each heading and pressing <u>CLEAR</u> <u>ENTER</u>.
- 5. Type the temperatures in °F in **list1**.

 Highlight the list2 heading, type the temperature conversion formula: (5/9) * list1 – 160/9.0 (screen 15).

	405 400 475 450 412	99.2 97.2 98.6 99		
(15)	list2=0 BLDTALL	(5/9)*1 Rad Auto	ist1-16 I Func	.0/9
Not	to. The	last nun	nhar is (20

585

Note: The last number is 9.0, not 9, so the results are not fractions.

F1+ F2+ F3+ F4+ F5+ F6+ F7+ ToolsPlotsListCalcDistr Tests Ints

list2

list3

phily list1

98

	F1+ F2+ F3+ F4+ F5+ F6+ F7+ ToolsPlotsListCalcDistrTestslints				
	phily	list1	li≤	st2	list3
	585	98.	36.	667	
	405	99.2	37.	333	
	475	98.6	37.	~~~	
	450	99.	37.	222	
	412	99.7	37.	611	
	list2[1]=36.6	<u>666</u>	<u>6666</u>	6667
(16)	BLDTALL	RAD APPI	ROX	FUNC	37.4

Note: This does the same calculations as 1-VarStats, but on two lists of equal length. (If the lists are not of equal length, a dimension mismatch error will be displayed.)

7. Press ENTER and observe the Celsius temperatures in **list2** (screen 16).

- 8. Press F4 Calc, and select 2: 2-VarStats.
- 9. Select X List: list1, Y List: list2, and Freq: 1.

10. Press ENTER ENTER (screen 18). Pressing 2nd ⊙ displays a second page of output and pressing 2nd ⊙ again displays a third page of output. 11. Check:

$$\bar{y} = 36.9861 = k \bar{x} + a = \left(\frac{5}{9}\right) * 98.575 - \frac{160}{9}$$

$$s_y = 0.473425 = k * s_x = \frac{5}{9} * 0.852164$$
Med $y = 37.1389 = k * \text{Med } x + a = \left(\frac{5}{9}\right) * 98.85 - \frac{160}{9}$
IQR $y = Q_3 y - Q_1 y = .75 = k * IQR x = \left(\frac{5}{9}\right) * 1.35$

$$\Sigma (y - \bar{y})^2 = 4.2589 = k^2 \Sigma (x - \bar{x})^2 = \left(\frac{5}{9}\right)^2 * 13.7975$$

Changing Units by Multiplying by a Constant (y = kx)

Example: Use the building heights in Philadelphia, PA stored in list **phily** and folder **BLDTALL** in Topic 1. These heights are in feet; change them to meters.

Notice that 3 ft = 1 yd, so

12ft = 12ft *
$$\frac{1 \text{ yd}}{3 \text{ ft}}$$
 = 4 yd or $k = \frac{1}{3} = 0.33\overline{3}$
to change feet to yards.

One meter is approximately a yard, but what is the conversion factor? The TI-89 has the answer stored with [2nd] [UNITS].

- 1. From the Home screen in folder **BLDTALL**, type **1** and then press [2nd] [UNITS] to display the UNITS screen.
- 2. From the Length submenu, highlight _ft (screen 19).
- 3. Press ENTER, and then press 2nd [▶], followed by 2nd [UNITS]. (The [▶] arrow is above the MODE key.)
- 4. From the Length submenu, highlight _m and press ENTER for 1 _ft ▶_m in the input line (screen 20).

Note: This is a special case of y = kx + a using a = 0. Measures of position and measures of spread (or both) are multiplied by a conversion factor k to change units.

- 5. Press ENTER for **0.3048_m** in the first line of screen 21 (or 1 ft = 0.3048 meters).
- Repeat steps 1 through 5, except select _yd instead of _m in step 4. The second line in screen 21 shows the ft to yards conversion.
- 7. Multiply **0.3048 * phily**, press STO► for an arrow on the input line of screen 21, and then paste or type **list1**.
- 8. Press ENTER and the first result of **178.308** indicates that the first height in list **phily** of 585 ft = 178.308 meters (screen 21).

From the Stats/List Editor (2nd APPS):

- 1. Press $\ensuremath{\mbox{F4}}$ Calc and select 1:1-VarStats.
- 2. Enter List: list1and Freq: 1.
- 3. Press ENTER ENTER (screen 22). Mean = **164.351** and $s_x =$ **46.9283** meters.
- 4. Compare these values in meters with the values in feet of Topic 5, screen 2, with $\bar{x} = 539.208$ feet and $s_x = 153.964$ feet.
- 5. Check: Mean = 164.351 meters = $k * \bar{x} = 0.3048 * 539.208$ ft.

Sample standard deviation = 46.9283 meters = $k * s_x$ = 0.3048 * 153.964 ft.

All the plots will look the same in each unit, but with a different scale. Screen 23 shows a modified boxplot using **ZoomData** to fit the plot to the screen. This screen resembles Topic 7, screen 14, but now **maxX = 945 ft = 288** meters. A building 1000 feet tall is 304.8 meters — 305 does not sound as grand as 1000!

	F1+ F2+ F3+ F4+ F5 F6+ Too1s A19ebra Ca1c Other Pr9ml0 C1ean Up				
	■1·_ft ⊭ _m .3 ■1·_ft ⊭ _yd .3333	3048∙_m 333∙_yd			
(21)	.3048*philg → fisti {178.308 123.444 .3048*philg→list1 BLDTALL RAD AUTO FUNC	121.9 3/30			

Note: You could have done this step in the Stats/List Editor.

	F1:	× ×-	1-Var Stat:	5	
	Ph 58	Σ Σx Σx ²	=164. =394 =698!	.351 4.42 920.	,3
	40 40 47	SX ØX N	=46.9 =45.9 =24.	1283 1402	
~ ~\	45 41 1 i s	MinX 4 Q1X CEnter	=121. =129. =OK	.92 .845	Ŀ
22)	BLDT	ALL	RAD AUTO	FUNC	3/ 5

(

Note: To get the modified boxplot, repeat steps 4 and 6 in Topic 7 with X List: **list1** instead of **phily** (screen 23).