Chapter 2

Summarizing Distributions of Univariate Data

Topics 5 through 8 summarize the distribution of the data shown in Chapter 1. This chapter answers questions such as What is the center of the data and how much does the data vary from the center value? and How does changing units affect the summary measures? Boxplots are used to provide a schematic view of a five-number summary.

Topic 5-Measures of Center and Spread

The most common measures of the center of a distribution are the mean and the median. The measures of spread are range, interquartile range, and standard deviation. These measures are given for data collected in a list or grouped in a frequency table.

Using the Data List

Example: Use the list of building heights from Topic 1 (list phily in folder BLDTALL).

1. From the Stats/List Editor, press F4 Calc and select 1:1-VarStats.
2. Select List: phily with Freq: $\mathbf{1}$ (screen 1).

3. Press ENTER to display screen 2.
4. Scroll down using Θ to display the second page of 1-VarStats (screen 3).

(3)

Measures of Center

Mean $=\bar{x}=\frac{\sum x}{n}=12941 / 24=539.208$ feet for the data set, phily list of building heights (the first value in screen 2).

This is the balance point of the dotplot from Topic 2, shown below. Think of the dots as bowling balls of equal weight.

Median $=$ MedX $=489$ feet is the middle value ($50^{\text {th }}$ percentile). Twelve values are below and 12 values are above 489 (the fifth value in screen 3).

Note: $\bar{x}=\mu$, for this case, since you are calculating the population mean of all 16 tall buildings 400 feet or taller in Philadelphia, PA.

Measures of Spread

Measures of spread are:
Range $=\operatorname{maxX}-\operatorname{minX}=945-400=545$ feet.
Interquartile Range $=\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}=578.5-426=152.5$ feet.

Note: The Interquartile Range spread of 152.5 feet covers the middle 50\% of the data, with 25% or six values below and 25% or six values above, as shown in the dotplot from Q_{1} to Q_{3}.
$1.5 * \operatorname{IQR}=1.5 * 152.5=228.75$ feet is used to measure the distance from the quartiles, Q_{1} and Q_{3}, to detect possible outliers. From the dotplot with $Q_{3} x=578.5$ feet (with 75% of the values below it and 25% or six values above it) measure $573.5+228.75=807.3$ feet. Only two buildings are taller than 807 feet and are identified as possible outliers at 848 and 945 feet. There are no possible outliers to the left of Q_{1}.

Standard Deviation

The standard deviation is a measure of the deviations from the mean, and its value can be highly influenced by values a long way from the mean. The following table compares values by dropping the largest value (945) from the list.

	$\boldsymbol{n = 2 4}$	$\boldsymbol{n = 2 3}$	Difference
Mean	539	522	17
Median	489	488	1^{*}
Range	545	448	97
IQR	153	155	2^{*}
$\boldsymbol{s}_{\boldsymbol{X}}$	154	130	24
$\sigma_{\boldsymbol{X}}$	151	127	24

* Robust Measures: Values that do not change much by the presence of extreme values are called robust. Notice that the median and interquartile ranges are more robust than the mean, range, and standard deviation.
$s_{x}=$ sample standard deviation $=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{545214}{23}}$ $=153.96 \mathrm{ft}$.
$\sigma_{x}=$ population standard deviation $=\sqrt{\frac{\sum(x-\mu)^{2}}{n}}=\sqrt{\frac{545214}{24}}$ $=150.72 \mathrm{ft}$.

Note: If your list was a random sample of values from a population, you could use s_{x} to estimate σ_{x}.

The standard deviation is a measure of the spread from the mean, and several intervals from the mean are given below the dotplot.

Topic 6-Measures of Position: Percentiles and Quartiles, Standard Scores (z scores)

Example: Use the building heights in Philadelphia, PA stored in list phily and folder BLDTALL in Topic 1.

Finding Standard Scores (z scores)

Standard scores (z scores) measure the number of standard deviations a value is from the mean, $z=\frac{x-\mu}{\sigma}$.

1. Press HOME to perform Home screen calculations. If there are computations on the Home screen from previous work, press F1 Tools and $8 \downarrow$ CLEAR HOME to clear the screen.

From Topic 5 you found the mean $=539.2$, and the standard deviation $=150.7$. Use these values to find the z score of the smallest (400 feet) and the tallest (945 feet) buildings in your list.
2. Type (400-539.2)/150.7 and press ENTER.
3. Type (945-539.2)/150.7 and press ENTER (screen 4).

Smallest Building: $\quad z=(400-539.2) / 150.7=-.923689$
Largest Building: $\quad z=(945-539.2) / 150.7=2.69277$
The smallest value is less than one standard deviation below the mean, and the largest value is almost three standard deviations above the mean.

Note: The difference in these z scores is another indication of the non-symmetric nature of the distribution (the data is skewed to the right). This is clearly shown below the dotplot in Topic 5.

Percentiles and Quartiles

The percentile of a score indicates what percent of the data values are smaller in magnitude. Not all textbooks or computer programs use the same procedure for finding percentiles, but all methods give similar answers as the sample size increases.
$25^{\text {th }}$ Percentile $=\mathrm{P}_{25}=\mathrm{Q}_{1}=426$ feet in the 1-VarStats value of Topic 5 (screens 2 and 3) with 25% of 24 , or six values below it.
$50^{\text {th }}$ Percentile $=\mathrm{P}_{50}=$ Med $=489$ feet in Topic 5 with 50% of 24 , or 12 values below (and 12 values above).
$75{ }^{\text {th }}$ Percentile $=\mathrm{P}_{75}=\mathrm{Q}_{3}=578.5$ feet in Topic 5 with 75% of 24 , or 18 values below it (and six values above).

Finding the $90^{\text {th }}$ Percentile

Example: Copy list phily data into list1. Sort list1 in ascending order.

1. Return to the Stats/List Editor using \square APPS.
2. Select Stats/List Editor and press ENTER.
3. Highlight the list1 heading, paste or type phily and press ENTER (screen 5).
4. To sort phily data in ascending order, press F3 List, 2:Ops and then 1:Sort List. Make sure the list is list1 and press ENTER (screen 6).
. Calculate 90% of n, or $.90 * 24=21.6$. On the Home screen, enter . 90×24 and then press ENTER to display the top of screen 7 .
5. Use 22, since 21.6 values are below 22. (If the result is a decimal, round up.)
6. On the Home screen, paste list1 and then press 2nd [c] 22 2nd []].
7. Press ENTER for 792 (screen 7).
(5)

Fiv Fict			
Phily	list. 1	list. 2	lists
585	585	1	
40.5	40.5	15	
490	4 QE	4	
475	475	0	
450	459	3	
412	412	1	
list.1[1]=585			
Eldtall	Eind ilu	FINC	$\Sigma^{\prime} 4$

(6)

	FFt FH		
Phily	list.	list. 2	lists
585	419	1	
40.5	409	1.5	
409	495	4	
475	412	0	
450	416	3	
412	417	1	
list.1[1]=4日G			
ELITtuLL	Find ilut	0 FUNC	\mathbb{Z}

Finding the $75^{\text {th }}$ Percentile

Example: Copy list phily data into list1. Sort list1 in ascending order.

1. Calculate 75% of n, or $.75 * 24=18$. On the Home screen, enter 75×24 and then press ENTER to display the middle of screen 8.

Since this is an integer, you will take the average of the $18^{\text {th }}$ and $19^{\text {th }}$ values so type (list1[18] + list1[19])/2 and press ENTER (screen 8), which agrees with $\mathrm{Q}_{3} \mathrm{x}$ of 1-VarStats in Topic 5, screen 3.

Finding the Percentile Value of a Number

Example: What percentile is the height 792 feet?

1. Return to the Stats/List Editor using \rightarrow APPS.
2. Select Stats/List Editor and press ENTER.
3. Observe that in list1 (with the data in order), $\mathbf{7 9 2}$ is the $22^{\text {nd }}$ value (screen 9). Thus, there are 21 values below it for $21 / 24.0=.875=87.5 \%$ or the 87.5 percentile.

Topic 7—Boxplots (or Box-and-Whisker Plots)

In Topic 5, screen 3, you used 1-VarStats on list phily for the following five-number summary:
(8)

-.9.24	21.
- 1 ist.1[22]	792
. $75 \cdot 24$	18
list.1[18]+ list.1[
578.5	
Clist.1[18]+list.1[19])/2	
ELDTALL Eifl ifFris Funic	

(9)

F17 F27			
phily	list1	list2	list3
792	700	848	22
572	739	945	23
739	792	946	24
572	848		
417	945		
list. [22]=792			
ELOTALL	RAD AULT	FUNC	$2 / 5$

$\operatorname{MinX}=400$	$Q_{1}=426$	Med $=489$	$Q_{3}=578.5$	$\operatorname{Max} X=945 \mathrm{ft}$

These five values define a boxplot as follows. From the Stats/List Editor and folder BLDTALL:

1. Set up Plot 1 with F2 Plots, 1 :PlotSetup.
2. Highlight Plot 1, press F1 Define, and select Plot Type: BoxPlot and X List: phily (screen 10).
3. Press ENTER to return to the Plot Setup screen.
(10)

4. Highlight Plot 2, press F1 Define, and select Plot Type: Mod Box Plot, Mark: Box, and X List: phily (screen 11).
5. Press ENTER to return to the Plot Setup screen. Note that two plots have check marks in the left margin (screen 12).
6. Press F5 ZoomData and then press F3 Trace, with Med = 489 (screen 13).
7. Use \odot and (1) to find the other values of the five-number summary.

The middle box has the middle 50% of the data, while each whisker has 25% of the data. The right whisker is much longer than the left because of the positive skewness. Even the middle 50% is not symmetrical, since the median is not in the middle of the box.
8. Press Θ to move the flashing cursor to the modified boxplot. The P2 in the upper right corner represents Plot 2 (screen 14).

Notice that the right whisker of the plot stops at 792 feet. This is the third largest value. The two boxes at $\mathbf{x}=848$ and maxX = 945 indicate the two possible outliers (as identified to the right of $\mathbf{Q}_{\mathbf{3}}+\mathbf{1 . 5} *$ IQR in the dotplot of Topic 5). No outliers are identified to the left of $\mathbf{Q}_{\mathbf{1}} \mathbf{- 1 . 5} *$ IQR.

There is no need to construct both boxplots. You will use the modified boxplot in this book because it shows more information.

The modified boxplots are also very helpful in comparing different distributions, as will be shown with Parallel Boxplots in Topic 9.

(12)

(13)

Note: If the x-axis is in the way, press [WINDOW] and set $\mathbf{y m i n}=1$ and $\operatorname{ymax}=10$, and then press \square [GRAPH] and [53 Trace.
(14)

Topic 8-The Effect of Changing Units on Summary Measures

Changing Units with $\mathbf{y}=\mathbf{k x}+\mathbf{a}$

Example: Change the following sample of body temperatures of 20 adults measured in degrees Fahrenheit to degrees Celsius.

98.0	99.2	97.2	98.6	99.0	99.7	97.2	97.7	98.6	98.2
97.0	99.1	99.3	99.0	99.2	98.7	99.6	99.4	99.2	97.6

$$
{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right)=\frac{5}{9}{ }^{\circ} \mathrm{F}-\frac{160}{9}
$$

so in this case $k=\frac{5}{9}$ and $a=\frac{-160}{9}$

1. For measures of position (median and mean):
a. $\operatorname{Med} y=k * \operatorname{Med} x+a$
b. $\bar{y}=\frac{y_{1}+y_{2+} \ldots y_{n}}{n}=\frac{\left(k x_{1}+a\right)+\left(k x_{2}+a\right)+\ldots\left(k x_{n}+a\right)}{n}=\frac{k\left(x_{1}+x_{2}+\ldots x_{n}\right)}{n}+\frac{n a}{n}=k \bar{x}+a$

Results: Measures of position x becomes $k * x+a$
2. For measures of spread (interquartile range and standard deviation):
a. $\quad \mathrm{IQR} y=\mathrm{Q}_{3} y-\mathrm{Q}_{1} y=\left(k \mathrm{Q}_{3} x+a\right)-\left(k \mathrm{Q}_{1} x+a\right)=k\left(\mathrm{Q}_{3} x-\mathrm{Q}_{1} x\right)=k * \mathrm{IQR} x$
b. $\quad s_{y}=\sqrt{\frac{\left[\left(k x_{1}+a\right)-(k \bar{x}+a)\right]^{2}+\ldots\left[\left(k x_{n}+a\right)-(k \bar{x}+a)\right]^{2}}{n-1}}=\sqrt{\frac{k^{2} \sum(x-\bar{x})^{2}}{n-1}}=k * s_{x}$

Results: Measures of spread W becomes $k * W$
3. Press 2nd APPS to return to the Stats/List Editor.
4. Clear all data in list1, list2, list3, and list4 by highlighting each heading and pressing CLEAR ENTER.
5. Type the temperatures in ${ }^{\circ} \mathrm{F}$ in list1.
6. Highlight the list2 heading, type the temperature conversion formula: (5/9) * list1 - 160/9.0 (screen 15).
7. Press ENTER and observe the Celsius temperatures in list2 (screen 16).
8. Press F4 Calc, and select 2: 2-VarStats.
9. Select X List: list1, Y List: list2, and Freq: $\mathbf{1}$.
10. Press ENTER ENTER (screen 18). Pressing 2nd Θ displays a second page of output and pressing 2 nd Θ again displays a third page of output.

(Fiv) $\overline{\text { F2\% }}$	F3,		
phily	list.1	1ist2	list3
585	98		
405	99.2		
400	97.2		
450	99.6		
412	99.7		

Note: The last number is 9.0, not 9 , so the results are not fractions.
(16)

Phily	list. 1	list2	lists
585	98.	SE.E日	
405	99.2	37.333	
4910	97.2	36.222	
475	98.6	37.220	
412	99.7	37.222	
list.2[1]=36.66666666666.7			
ELDTiLl	Eiflu if	Fix FUMAC	$3 / 4$

(17)

Note: This does the same calculations as 1 -VarStats, but on two lists of equal length. (If the lists are not of equal length, a dimension mismatch error will be displayed.)
(18)

11. Check:

$$
\begin{aligned}
& \bar{y}=36.9861=k \bar{x}+a=\left(\frac{5}{9}\right) * 98.575-\frac{160}{9} \\
& s_{y}=0.473425=k * s_{x}=\frac{5}{9} * 0.852164 \\
& \text { Med } y=37.1389=k * \operatorname{Med} x+a=\left(\frac{5}{9}\right) * 98.85-\frac{160}{9} \\
& \mathrm{IQR} y=\mathrm{Q}_{3} y-\mathrm{Q}_{1} y=.75=k * \operatorname{IQR} x=\left(\frac{5}{9}\right) * 1.35 \\
& \sum(y-\bar{y})^{2}=4.2589=k^{2} \sum(x-\bar{x})^{2}=\left(\frac{5}{9}\right)^{2} * 13.7975
\end{aligned}
$$

Changing Units by Multiplying by a Constant ($\mathbf{y}=\mathbf{k x}$)

Example: Use the building heights in Philadelphia, PA stored in list phily and folder BLDTALL in Topic 1. These heights are in feet; change them to meters.
Notice that $3 \mathrm{ft}=1 \mathrm{yd}$, so
$12 \mathrm{ft}=12 \mathrm{ft} * \frac{1 \mathrm{yd}}{3 \mathrm{ft}}=4 \mathrm{yd}$ or $k=\frac{1}{3}=0.33 \overline{3}$
to change feet to yards.
One meter is approximately a yard, but what is the conversion factor? The TI-89 has the answer stored with 2nd [UNITS].

1. From the Home screen in folder BLDTALL, type $\mathbf{1}$ and then press 2nd [UNITS] to display the UNITS screen.
2. From the Length submenu, highlight _ft (screen 19).
3. Press ENTER, and then press 2nd [\downarrow], followed by 2nd [UNITS]. (The [\downarrow] arrow is above the MODE key.)

Note: This is a special case of $y=k x+a$ using $a=0$. Measures of position and measures of spread (or both) are multiplied by a conversion factor k to change units.
(19)

5. Press ENTER for $\mathbf{0 . 3 0 4 8} \mathbf{m}$ in the first line of screen 21 (or $1 \mathrm{ft}=0.3048$ meters).
6. Repeat steps 1 through 5, except select _yd instead of _m in step 4 . The second line in screen 21 shows the ft to yards conversion.
7. Multiply 0.3048 * phily, press STO for an arrow on the input line of screen 21 , and then paste or type list1.
8. Press ENTER and the first result of $\mathbf{1 7 8 . 3 0 8}$ indicates that the first height in list phily of $585 \mathrm{ft}=178.308$ meters (screen 21).

From the Stats/List Editor (2nd APPS):

1. Press F4 Calc and select 1:1-VarStats.
2. Enter List: list1and Freq: 1.
3. Press ENTER ENTER (screen 22). Mean = $\mathbf{1 6 4 . 3 5 1}$ and $\mathrm{s}_{x}=46.9283$ meters.
4. Compare these values in meters with the values in feet of Topic 5 , screen 2 , with $\bar{x}=539.208$ feet and $s_{x}=153.964$ feet.
5. Check: Mean $=164.351$ meters $=k * \bar{x}=0.3048 *$ 539.208 ft .

Sample standard deviation $=46.9283$ meters $=k * s_{x}$ $=0.3048 * 153.964 \mathrm{ft}$.

All the plots will look the same in each unit, but with a different scale. Screen 23 shows a modified boxplot using ZoomData to fit the plot to the screen. This screen resembles Topic 7, screen 14, but now $\operatorname{maxX}=945 \mathrm{ft}=288$ meters. A building 1000 feet tall is 304.8 meters - 305 does not sound as grand as 1000 !
(21)

-1._ft -m .			$3048 \cdot$ _m
-1._ft - -yd . 333333 -yd			
-. $3048 \cdot \mathrm{phily} \rightarrow$ list1			
<178	123		
ELLtall	Rind Auto	FUNC	

Note: You could have done this step in the Stats/List Editor.
(22)

(23)

Note: To get the modified boxplot, repeat steps 4 and 6 in Topic 7 with X List: list1 instead of phily (screen 23).

