Finding the Area of Regular Polygons

Activity 3

Not all prisms have rectangular bases. Some have bases that are triangular. Others, such as the octagonal prisms shown in Figure 7, have bases that are regular polygons.

Figure 7: Octagonal prisms

In this activity, you use your knowledge of the area of triangles and squares to develop a method for finding the area of regular polygons with five or more sides.

Exploration

- a. Use a geometry utility to construct a regular pentagon by completing the following steps.
 - 1. Construct a circle. Place five points on the circle. Use segments to connect the center of the circle to each of the five points. Each angle formed by two adjacent radii is a **central angle**.
 - 2. Drag the points on the circle until the measures of all the central angles are equal.
 - 3. Connect the points on the circle to form a regular pentagon.

b. Create a table with headings like those in Table 2 below.

Table 2: Triangles in regular polygons

Polygon	No. of Triangles	Apothem (a)	Length of Side (s)	Area of Polygon
pentagon	5			
heptagon				
decagon				
<i>n</i> -gon				

c. Measure the perpendicular distance from the center of the polygon to one side. This distance is the length of the **apothem**. In Figure 7, for example, \overline{AG} is the apothem. Record this measure in the appropriate column in Table 2.

Figure 7: Constructing a regular pentagon

- **d.** Measure the length of one side of the polygon. Record this length in the appropriate column of Table 2.
- e. Your construction of a polygon contains congruent triangles. Create a formula using the length of the apothem to find the area of one of these triangles.
 - 2. Use the area of one congruent triangle to find the total area of the polygon. Record this area in the appropriate column of Table 2.
- **f.** Use the geometry utility to find the area of the polygon. Compare this value to the one you determined in Part **e**.
- **g.** Repeat Parts **a–f** for a regular heptagon and a regular decagon.
- h. Create a formula for finding the area of a regular n-gon. Enter it in the appropriate cell of Table 2.

Discussion

- **a.** As the number of sides of a polygon increases, what happens to the shape of the polygon?
- **b.** How does the measure of the central angle of a polygon affect the shape of the polygon?
- **c.** How do the areas of the polygons found using your formula compare to the areas of the same polygons found using the geometry utility?
- d. The area of a regular polygon with n sides, apothem a, and side length s can be described by the following equation:

Area =
$$\left(\frac{1}{2}as\right)n$$

Is this equation equivalent to the formula you developed in Part ${\bf h}$ of the exploration? Explain your response.