

Name _____

Student Activity

Class ____

In this lesson, you will continue to investigate the coordinates of vertices of rotated triangles and look for patterns.

Open the document: Rotations.tns.

<u>It is important that Rotations Lesson 4 be completed before doing this Lesson.</u>

TRANSFORMATIONAL GEOMETRY Rotations

TEXAS INSTRUMENTS

PLAY INVESTIGATE EXPLORE DISCOVER

Recall from Lesson 4:

 Δ ABC is rotated n° about the origin. Use the grid above to help write the coordinates of the vertices of the image triangles in the table below.

n°			
0°	A: (4, 2)	B: (3, 6)	C: (7, 0)
90°	A':	B':	C':
180°	A":	B":	C":
270°	A"":	B"":	C":
360°	A ⁽⁴⁾ :	B ⁽⁴⁾ :	C ⁽⁴⁾ :

S Grid & Coordinates 2

Class ____

Name

Check your answers in the previous table by using the Rotations.tns file in exercise 2 below.

Move to page 1.3. (ctrl ▶ two times)

Student Activity

On the handheld, press ctrl ▶ and ctrl ◀ to navigate through the pages of the lesson. (On the iPad®, select the page thumbnail in the page sorter panel.)

2. Press menu to open the menu.

(On the iPad, tap the wrench icon to open the menu.)

Press 1 (1: Templates), 5 (5: Grid & Coordinates).

Grab and move each of the three vertices of \triangle ABC (A, B, C) so that: A: (4, 2) B: (3, 6) C: (7, 0)

- 3. To check your answers, change the angle of rotation to 90°. Click on open the menu, and press the space bar () to select 90° and close the menu.

 Make corrections as needed.
 - a. Click on \square or press \square to rotate \triangle ABC 90° about the origin.

 Compare the ordered pairs listed on the screen to the ones in the table on the previous page.
 - b. Click on \bigcirc or press \bigcirc to rotate \triangle ABC an additional 90° about the origin, a total of 180°. Compare the ordered pairs listed on the screen to the ones in the table on the previous page.
 - c. Click on \square or press \square to rotate \triangle ABC an additional 90° about the origin, a total of 270°. Compare the ordered pairs listed on the screen to the ones in the table on the previous page.
 - d. Click on \square or press \square to rotate \triangle ABC an additional 90° about the origin, a total of 360°. Compare the ordered pairs listed on the screen to the ones in the table on the previous page.
- 4. Reset the page. Press Reset (ctrl del).

 Change the angle of rotation to 90°. Click on the space bar () to select 90° and to close the menu.

Click on \square or press \square to rotate \triangle ABC 90° about the origin.

a. Look at the coordinates of corresponding vertices. Does each point (x, y) on Δ ABC map to (- y, x) on Δ A'B'C'?

Student Activity

Class

- b. Grab and move point P (click on point P or press ho and use the directional arrows) and look at the coordinates of corresponding vertices. Move point P to several places on the grid. Does each point (x, y) on Δ ABC always map to (– y, x) on Δ A'B'C'? Explain.
- c. Click on or press Q to rotate ΔABC an additional 90° about point P, a total of 180°. Move point P to several places on the grid. (click on point P or press P and use the directional arrows)
 Does each point (x, y) on ΔABC always map to (-x, -y) on ΔA'B'C'? Explain.
- e. Click on or press to rotate ΔABC an additional 90° about point P, a total of 270°. Move point P to several places on the grid.
 Does each point (x, y) on ΔABC always map to (y, -x) on ΔA'B'C'? Explain.
- f. Move point P back to the origin. Does each point (x, y) on \triangle ABC now map to (y, -x) on \triangle A'B'C'? Explain.
- g. Discuss in your groups and make a generalization.
- 5. Reset the page. Press Reset (ctrl del).
 Change the angle of rotation to -90°. Click on or press E to open the menu, and press the space bar () to select -90° and to close the menu.
 Click on or press Q to rotate Δ ABC -90° about the origin.

Student Activity

Class _____

- Record the Original coordinates (first coordinates displayed) in the first row of the following table. Look for patterns.
- b. Investigate and mentally make note of the coordinates by grabbing and moving each of the three vertices of Δ ABC ($\boxed{\mathbf{A}}$, $\boxed{\mathbf{B}}$, $\boxed{\mathbf{C}}$) to create different shaped triangles.

Record a set of data observed in row "Figure 1" in the following table.

Repeat and move each of the three vertices and record a set of data in row "Figure 2" below. Look for patterns among the coordinates of corresponding vertices.

Which coordinates remain the same? Which coordinates change? How? Discuss.

Rotate – 90°	А	В	С	A'	B'	C,
Original						
Figure 1						
Figure 2						

c. Using the pattern observed in the previous table, if a point on the pre-image triangle has coordinates (5, 8), what are the coordinates of its corresponding point on the image triangle? That is $(5, 8) \rightarrow$ ______ ' \rightarrow ' means "maps to"

Similarly, the point (-3, 7) would map to what point? That is $(-3, 7) \rightarrow$ _____.

d. In general, if a point on the pre-image triangle has coordinates (x, y), what are the coordinates of its corresponding point on the image triangle?

That is $(x, y) \rightarrow \underline{\hspace{1cm}}$ ' \rightarrow ' means "maps to"

- e. Rotating a triangle -90° about the origin is equivalent to a different rotation. Explain.
- f. What rotation is equivalent to rotating a triangle -180° about the origin?
- g. What rotation is equivalent to rotating a triangle 270° about the origin?