\qquad
\qquad

In this lesson, you will continue to investigate the coordinates of vertices of rotated triangles and look for patterns. Open the document: Rotations.tns.
It is important that Rotations Lesson 4 be completed before doing this Lesson.
1.

Recall from Lesson 4:
$\Delta A B C$ is rotated n° about the origin. Use the grid above to help write the coordinates of the vertices of the image triangles in the table below.

n°			
0°	$\mathrm{A}:(4,2)$	$\mathrm{B}:(3,6)$	$\mathrm{C}:(7,0)$
90°	$\mathrm{A}^{\prime}:$	$\mathrm{B}^{\prime}:$	$\mathrm{C}^{\prime}:$
180°	$\mathrm{A}^{\prime \prime}:$	$\mathrm{B}^{\prime \prime}:$	$\mathrm{C}=$
270°	$\mathrm{A}^{\prime \prime \prime}:$	$\mathrm{B}^{\prime \prime \prime}:$	$\mathrm{C}{ }^{\prime \prime \prime}:$
360°	$\mathrm{A}^{(4)}:$	$\mathrm{B}^{(4)}:$	$\mathrm{C}^{(4)}:$

\qquad

Check your answers in the previous table by using the Rotations．tns file in exercise $\mathbf{2}$ below．

Move to page 1．3．（ ctrl two times）
On the handheld，press and ctrrl \downarrow to navigate through the pages of the lesson．
（On the $\mathrm{iPad}^{\circledR}$ ，select the page thumbnail in the page sorter panel．）
2．Press menu to open the menu．
（On the iPad，tap the wrench icon to open the menu．） Press 1 （1：Templates）， 5 （5：Grid \＆Coordinates）．

Grab and move each of the three vertices of $\triangle \mathrm{ABC}$
（ $\mathbf{A}, \mathbf{B}, \mathbf{C}$ ）so that：
A：$(4,2)$
B：$(3,6)$
C：$(7,0)$

3．To check your answers，change the angle of rotation to 90° ．Click on $\measuredangle^{\circ} 45^{\circ} \checkmark$ or press 国 to open the menu，and press the space bar（ \square ）to select 90° and close the menu． Make corrections as needed．
a．Click on or press $⿴ 囗$ to rotate $\triangle \mathrm{ABC} 90^{\circ}$ about the origin．
Compare the ordered pairs listed on the screen to the ones in the table on the previous page．
b．Click on \wp or press $⿴ 囗+\quad$ to rotate $\triangle \mathrm{ABC}$ an additional 90° about the origin，a total of 180° ．
Compare the ordered pairs listed on the screen to the ones in the table on the previous page．
c．Click on or press $⿴ 囗$ to rotate $\triangle \mathrm{ABC}$ an additional 90° about the origin，a total of 270° ． Compare the ordered pairs listed on the screen to the ones in the table on the previous page．
d．Click on or press \mathbb{Q} to rotate $\triangle \mathrm{ABC}$ an additional 90° about the origin，a total of 360° ． Compare the ordered pairs listed on the screen to the ones in the table on the previous page．

4．Reset the page．Press Reset（otrl dell）．
Change the angle of rotation to 90° ．Click on $\measuredangle^{\circ} 45^{\circ} \checkmark$ or press 国 to open the menu，and press the space bar（ \square ）to select 90° and to close the menu．

Click on \square or press \mathbb{Q} to rotate $\triangle \mathrm{ABC} 90^{\circ}$ about the origin．
a．Look at the coordinates of corresponding vertices．Does each point（ x, y ）on $\triangle A B C$ map to $(-y, x)$ on $\Delta A^{\prime} B^{\prime} C^{\prime}$ ？
\qquad
\qquad
b．Grab and move point P（click on point P or press P and use the directional arrows）and look at the coordinates of corresponding vertices．Move point P to several places on the grid．
Does each point (x, y) on $\Delta A B C$ always map to $(-y, x)$ on $\Delta A^{\prime} B^{\prime} C^{\prime}$ ？
Explain．
c．Click on or press to rotate $\triangle \mathrm{ABC}$ an additional 90° about point P ，a total of 180° ． Move point P to several places on the grid．（click on point P or press P and use the directional arrows）
Does each point (x, y) on $\Delta A B C$ always map to $(-x,-y)$ on $\Delta A^{\prime} B^{\prime} C^{\prime} ?$
Explain．
d．Move point P back to the origin（click on point P or press P and use the directional arrows）．
Does each point（ x, y ）on $\Delta A B C$ now map to $\left(-x,-y\right.$ ）on $\Delta A^{\prime} B^{\prime} C^{\prime}$ ？
Explain．
e．Click on or press $⿴ 囗+\quad$ to rotate $\triangle \mathrm{ABC}$ an additional 90° about point P ，a total of 270° ． Move point P to several places on the grid．
Does each point (x, y) on $\Delta A B C$ always map to $(y,-x)$ on $\Delta A^{\prime} B^{\prime} C^{\prime}$ ？
Explain．
f．Move point P back to the origin．
Does each point（ x, y ）on $\Delta A B C$ now map to $(y,-x)$ on $\Delta A^{\prime} B^{\prime} C^{\prime}$ ？
Explain．
g．Discuss in your groups and make a generalization．

5．Reset the page．Press Reset（ctrr did）．
Change the angle of rotation to -90° ．Click on $\measuredangle ⿱ 一 𫝀 口_{\circ} 45^{\circ} \checkmark$ or press E to open the menu，and press the space bar（ \square ）to select -90° and to close the menu．

Click on
or press \square to rotate $\triangle \mathrm{ABC}-90^{\circ}$ about the origin．
\qquad
a. Record the Original coordinates (first coordinates displayed) in the first row of the following table. Look for patterns.
b. Investigate and mentally make note of the coordinates by grabbing and moving each of the three vertices of $\Delta \mathrm{ABC}(\mathbb{A}, \mathbb{B}, \mathbb{C})$ to create different shaped triangles.
Record a set of data observed in row "Figure 1" in the following table.
Repeat and move each of the three vertices and record a set of data in row "Figure 2" below.
Look for patterns among the coordinates of corresponding vertices.
Which coordinates remain the same? Which coordinates change? How? Discuss.

Rotate $\mathbf{- 9 0 ^ { \circ }}$	A	B	C	A $^{\prime}$	B^{\prime}	C^{\prime}
Original						
Figure 1						
Figure 2						

c. Using the pattern observed in the previous table, if a point on the pre-image triangle has coordinates (5,8), what are the coordinates of its corresponding point on the image triangle? That is $(5,8) \rightarrow$ \qquad ' \rightarrow ' means "maps to"

Similarly, the point $(-3,7)$ would map to what point? That is $(-3,7) \rightarrow$ \qquad -
d. In general, if a point on the pre-image triangle has coordinates (x, y), what are the coordinates of its corresponding point on the image triangle?

That is $(\mathrm{x}, \mathrm{y}) \rightarrow$ \qquad ' \rightarrow ' means "maps to"
e. Rotating a triangle -90° about the origin is equivalent to a different rotation. Explain.
f. What rotation is equivalent to rotating a triangle -180° about the origin?
g. What rotation is equivalent to rotating a triangle -270° about the origin?

