Transformations

Teacher Notes \& Answers

$\begin{array}{llllll}7 & 8 & 9 & 10 & 11 & 12\end{array}$

Introduction

Transformation means a change in form or appearance. Common transformations when dealing with functions include:

The aim of this activity is to provide an understanding of the algebra underpinning transformations. The technique involves the consideration of a single point and the effect it has on the general form or appearance of an entire family of points defined by a rule or function. A video tutorial is available to help set up your TI-Nspire file.

https://bit.ly/TI-transformations

Set up
Open your "Transformations" document created using the video link above.

Point $\mathrm{P}\left(x_{1}, y_{1}\right)$ is on the parabola: $f_{1}(x)=x^{2}$
Point P has undergone a transformation such that:

$$
P^{\prime}\left(x^{\prime}, y^{\prime}\right) \text { such that: } \quad x^{\prime}=2 x_{1} \quad \text { and } \quad y^{\prime}=y_{1}
$$

The text tip on P^{\prime} provides the transformation details.
Edit the transformation for your point P^{\prime} to match these conditions.
Drag point P along the parabola and observe the coordinates of P^{\prime}.
Point P^{\prime} is described as a dilation, "parallel to the x axis" or "away from the y axis" by a factor of 2 .
In the screen opposite, the path of point P^{\prime} has been traced using the Trace (Geometry) tool.

Determining Equations

Question 1.

a) Given $x^{\prime}=2 x, y^{\prime}=y$ and $y=x^{2}$, determine the relationship between x^{\prime} and y^{\prime}. Check your answer using your calculator and the corresponding transformation tools on the calculator.
Answer: $y^{\prime}=\frac{\left(x^{\prime}\right)^{2}}{4}$ or $y=\frac{x^{2}}{4}$
b) Based on your answer to the previous question, describe the transformation from $y=x^{2}$ to $y=4 x^{2}$. Test your answer using your calculator and the transformations file.
Answer: Dilation parallel to the x axis (away from the y axis) by a factor of $1 / 2$.

Question 2.

Edit the transformation for point P^{\prime} such that: $x^{\prime}=x+2$ and $y^{\prime}=y$
a) Describe the location of point P^{\prime} in relation to P.

Answer: Point P^{\prime} is two units to the right (translation of 2 units in the positive x direction).
b) Determine the equation for the path of point P^{\prime}.

Answer: $y=(x-2)^{2}$ or $y^{\prime}=\left(x^{\prime}-2\right)^{2}$

Question 3.

Edit the transformation for point P^{\prime} such that: $x^{\prime}=x$ and $y^{\prime}=y-3$
a) Describe the location of point P^{\prime} in relation to P.

Answer: Point P^{\prime} is three units below point P (translation of 3 units in the negative y direction).
b) Determine the equation for the path of point P^{\prime}.

Answer: $y^{\prime}+3=\left(x^{\prime}\right)^{2}$ or $y=x^{2}-3$

Question 4.

Point P is dilated by a factor of 3 away from the x axis, then translated 2 units in the negative x direction. Use your calculator to observe the path of point P^{\prime} and determine the equation for $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$.

Answer: Transformations on $x: x^{\prime}=3 x-2$. Based on the order of operations, the dilation by a factor of 3 will occur first (as per description), followed by the translation of 2 units (in the negative x direction).
Equation: $y^{\prime}=\frac{\left(x^{\prime}+2\right)^{2}}{9}$ or $y=\frac{(x+2)^{2}}{9}$

Question 5.

Point P is translated by 2 units in the negative x direction, then dilated by a factor of 3 away from the x axis.
Use your calculator to observe the path of point P^{\prime} and determine the equation for $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$.
Answer: Transformations on $x: x^{\prime}=3(x-2)$. Parenthesis must be used to order the transformations.
Equation: $y^{\prime}=\left(\left(\frac{x^{\prime}}{3}\right)+2\right)^{2}$ or $y=\left(\frac{x}{3}+2\right)^{2}$ Note that this can also be written as: $y=\frac{1}{9}(x+6)^{2}$

Question 6.

Based on your answers to Questions 4 and 5, does the order of transformations matter?
Answer: Yes, the equations are very different. As the point is translated first the dilation 'from' the y axis is accentuated.

Question 7.

$P(x, y)$ is transformed such that $x^{\prime}=x$ and $y^{\prime}=2 y$, use your calculator to observe the path of point P^{\prime}.
a) Determine the equation for $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$.

Answer: Equation: $\frac{y^{\prime}}{2}=\left(x^{\prime}\right)^{2}$ or $y=2 x^{2}$
b) Write an equivalent transformation, based on your equation in part (a).

Answer: The equation shows that this is equivalent to a dilation away from the y axis by a factor of $\frac{1}{\sqrt{2}}$.

Question 8.

$P(x, y)$ is transformed such that $x^{\prime}=x-3$ and $y^{\prime}=-y$, use your calculator to observe the path of point P^{\prime}.
a) Determine the equation for $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$.

Answer: Equation: $-y^{\prime}=\left(x^{\prime}+3\right)^{2}$ or $y=-(x+3)^{2}$
b) State the corresponding transformations.

Answer: The graph $y=x^{2}$ has been reflected in the x axis and translated 3 units in the negative x direction.

