

Assessment:

- 1. How does the actual data compare to the prediction you made?
- 2. If a body is being pulled in a circle and the force stops, what direction does the body follow?
- 3. What were the variables in this investigation?
- 4. How do mass, velocity and acceleration relate to each other in this investigation?
- 5. What causes a "tight" car? What causes a "loose" car?

Assessment:

- 1. How does the actual data compare to the prediction you made?
 - Answers will vary
- 2. If a body is being pulled in a circle and the force stops, what direction does the body follow?
 - In a straight line tangent to the circle at the point at which the force stopped.
- 3. What were the variables in this investigation?
 - Independent: weight balance
 - dependent: time
- 4. How do mass, velocity and acceleration relate to each other in this investigation?
 - *F* = *m*a
- 5. What causes a "tight" car? What causes a "loose" car?
 - Car pushes, will not turn, needs more weight on front
 - Cat spins out, back tries to pass the front, needs more weight on back.