\qquad

Group:

\qquad Count-off: \qquad

Staggered Race 1 Part 2

Goal: Make a motion for Actor B so that Actor B starts at your count-off \# and travels at the same velocity and duration as Actor A. F2: View: Animation (2 ${ }^{\text {nd }}$ QUIT [MODE] to Exit) to view the animation. F4: Tools: Marks to turn on Marks.

Don't forget to include units!

1. What is the velocity of Actor A? \qquad
2. Where does Actor A start? \qquad
3. What is the duration of Actor A ? \qquad
4. Write a linear function to model Actor B's motion in slope-intercept form $(y=m x+b)$:

Function: \qquad Domain: \qquad
Edit Actor B's function and domain in F3: Edit: POS $>$ B $~$ FnEdit. F2: View: Animation to verify Actor B starts at your count-off \# and travels at the same velocity and duration as Actor A.
5. Describe the motion of your group's set of Actors. (Be sure to include starting positions, velocities, and durations. Include count-off \#s when referring to Actors.)

Name:

Group:

Count-off:
6. Draw your prediction of your group's functions. Label the axes and include units. Label each function with count-off \#s.

7. Describe the motion of the class' set of Actors. (Be sure to include starting positions, velocities, and durations. Include group and count-off \#s when referring to Actors.)
\qquad

Group:

Count-off:
8. Draw your prediction of the class' functions. Label the axes and include units. Label each function with group and count-off \#s.

9. Suppose we use G for group \# and C for count-off \#. What is the general rule for this activity?

Function:
Domain: \qquad

