Statistiques - Probabilités

TI graphiques (82, 83, 84)

Loi uniforme

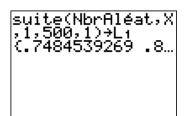
Ce texte a été rédigé par Rémy Coste il y a plusieurs années sur une idée d'Alain Ladureau, et devient, avec la parution des nouveaux programmes de Première et de Terminales, encore plus d'actualité.

Vers la loi uniforme

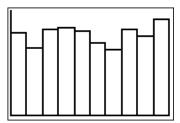
Énoncé de la situation :

On choisit au hasard un point M sur un segment [AB] de longueur 1. Quelle est la loi D de la distance AM?

La calculatrice permet de simuler l'expérience et de la répéter un grand nombre de fois (ici 500 fois).



On peut demander l'affichage de l'histogramme avec un pas 0,1.



Quel modèle choisir pour cette distribution?

Notons U la loi uniforme sur l'intervalle [0; 1], simulée par NbrAléat.

Déterminons d'abord la fonction de répartition F de D. Par définition, pour tout x élément de [0;1]:

$$F(x) = p(0 \le D \le x) = p(0 \le U \le x) = x$$

I suit par définition la loi uniforme sur l'intervalle [0 : 1]

car U suit par définition la loi uniforme sur l'intervalle [0; 1].

Déterminons maintenant la densité de probabilité, autrement dit une fonction f sur [0; 1] telle que $F(x) = p(0 \le X \le x)$ soit précisément égal à l'aire sous la courbe de f entre 0 et x.

On doit donc avoir $F(x) = \int_{0}^{x} f(t) dt$. Il est clair que la dérivée de F est f. Autrement dit, f(x)=1 pour x élément de [0;1].

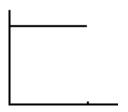
Nous avons donc
$$F(x) = p(0 \le X \le x) = \int_0^x f(t) dt$$
.

Cette densité permet, entre autres, de calculer la moyenne (ou espérance) de la loi D:

$$E(X) = \int_0^1 x f(x) dx = \left[\frac{1}{2}x^2\right]_0^1 = \frac{1}{2}$$

... résultat auquel on pouvait s'attendre pour la moyenne de la longueur AM.

$$F(x) = x$$



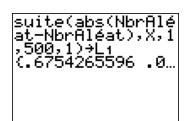
$$f(x) = F'(x) = 1$$

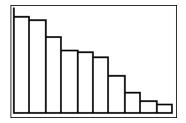
Une autre loi continue

Énoncé de la situation :

On choisit au hasard deux points M et N sur un segment [AB] de longueur 1. Quelle est la loi D de la distance MN ?

Expérimentons.





Quel modèle choisir pour cette distribution ? Ici, un petite recherche s'impose : notons x et y les longueurs AM et AN.

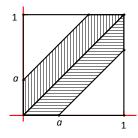
Cherchons à déterminer la fonction de répartition, c'est-à-dire la fonction qui, à un réel a donné dans l'intervalle [0;1], associe la probabilité que D soit inférieure ou égale à a.

Or
$$p(D \le a) = p(|x - y| \le a)$$
.

L'événement
$$|x-y| \le a$$
 peut s'écrire $\begin{cases} x \ge y \text{ et } y \ge x - a \\ \text{ou} \\ x \le y \text{ et } y \le x + a \end{cases}$

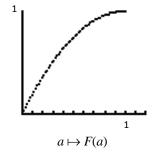
Un régionnement du plan nous montre que F(a) est égal à l'aire du polygone hachuré ci-contre qui vaut :

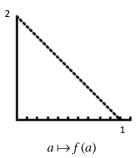
$$F(a) = 1 - 2 \times \frac{(1-a)^2}{2} = 2a - a^2$$



D'où la fonction de densité :

$$f(a) = F'(a) = 2 - 2a$$
.





Calcul de l'espérance :

$$E(X) = \int_0^1 x \ f(x) \ dx = \left[-\frac{2}{3} x^3 + x^2 \right]_0^1 = \frac{1}{3}.$$

Étonnant, non?