Created by: Ray Fox, Overton High School
Lisa Baranoski, Antioch High School

Activity Overview

Students will explore the characteristics of an absolute value function.

TN Algebra II Standards:

CLE 3103.3.2 Understand, analyze, transform and generalize mathematical patterns, relations and functions using properties and various representations. (Level 4 on Webb's Depth of Knowledge)
SPI 3103.3.10 Identify and/or graph a variety of functions and their translations.
\checkmark 3103.3.4 Analyze the effect of changing various parameters on functions and their graphs.
\checkmark 3103.3.11 Describe and articulate the characteristics and parameters of a parent function.
$>$ Open the TI-Nspire document Exploring AbsoluteValue Transformations
$>$ Press ctris to move to page 1.2 and begin the lesson

1. Write the vertex form of a absolute value function. \qquad .
2. Observe the characteristics of the absolute value parent graph on page 1.2.

List the characteristics observed:
Answers will vary. Teacher will be looking for:
"V" shape graph; opens upward; looks like a smile; the graph goes through $(0,0)$ or the origin; $a=1$; h and k equal zero.

Exploring "a."

3. Increase and decrease the value of " a." Describe what is happening to the function. Possible answers: The graph opens upward when $a>0$. When $a<0$, the graph opens downward. When $0<a<1$ and $-1<a<0$, the function is wider. When $a<-1$ and $a>1$, the graph is stretched up or down.
4. Complete the statements below.

When " a " positive, the function opens upward.
Therefore, when " a " is positive, the graph has a \qquad Maximum \qquad .
(Maximum or Minimum)
When " a " negative, the function opens downward.
Therefore, when " a " is negative, the graph has a \qquad Minimum \qquad .
5. What happens when $a=0$ and $-1<a<1$? The graph is a horizontal line. $y=0$ (Explain to the students mathematically by substituting zero in for a in the vertex form of the absolute value function.) Reinforce that when a is between -1 and 1, the function is wider.

Exploring "h."

6. Increase and decrease the value of " h." Describe what is happening to the function. The function moves left and right.
7. Complete the statements below.

When " h " positive, the function moves right.
When " h " negative, the function moves left.

Exploring " k."

8. Increase and decrease the value of " k." Describe what is happening to the function. The function moves up and down.
9. Complete the statements below.

When " k " positive, the function moves up.
When " k " negative, the function moves down.
10. Use your TI-Nspire to discover how to find the Vertex?

Parameters:$a=1$ $h=0$ $k=0$	This is called the parent function. Vertex form: $\quad y=1\|x-0\|+0$ Simplify $\quad y=\|x\|$ Identify the coordinates of the minimum. (0, $\mathbf{0})$		
Parameters:$a=.5$ $h=-3$ $k=0$	How did the function move? The function moved to the left 3 units. Vertex form: $y=.5\|x+3\|$ Identify the coordinates of the minimum. (-3, 0)		
Parameters:$a=2$ $h=1$ $k=2.5$	How did the function move? The function moved to the right 1 units and up 2.5 units. Vertex form: $y=2\|x-1\|+2.5$ Identify the coordinates of the minimum. (1, 2.5)		
Parameters: $a=-\frac{1}{3}$			
$h=-2.3$			
$k=-1.5$		\quad	How did the function move? The function moved left 2 units and
:---			
down 3.5 units.			
Vertex form: $y=-\frac{1}{3}\|x+2.3\|-1.5$			
Identify the coordinates of the minimum. (-2.3, -1.5)			

11. Define vertex. (Use h, k and vertex form in your definition) Possible answer: The vertex of an absolute value function is where the maximum or minimum is located at (h, k). You can also find the vertex from vertex for.

Exploring Absolute Value Transformations with TI-Nspire
 Teacher Guide
 Algebra II

Assessment:

On a piece of paper, do the following:
o Make a sketch of the absolute value functions.
o Identify the vertex.
o Is there a maximum or minimum? Why?
a.) $y=3|x-4|-2$
b.) $y=-|x+4|+2$

Vertex: (4, -2); minimum
Vertex: (-4, 2); maximum
c.) $y=\frac{1}{2}|x+1|+3$
d.) $y=-2|x-3|$

Vertex: (-1, 3); minimum
Vertex: (3, 0); maximum

