

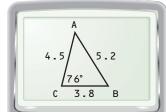
Investigating ACTIVITY Use before Lesson 7.2

@HomeTutor classzone.com Keystrokes

7.2 Converse of the Pythagorean Theorem

MATERIALS • graphing calculator or computer

QUESTION


How can you use the side lengths in a triangle to classify the triangle by its angle measures?

You can use geometry drawing software to construct and measure triangles.

EXPLORE

Construct a triangle

- **STEP 1 Draw a triangle** Draw any $\triangle ABC$ with the largest angle at C. Measure $\angle C$, \overline{AB} , \overline{AC} , and \overline{CB} .
- **STEP 2** Calculate Use your measurements to calculate AB^2 , AC^2 , CB^2 , and $(AC^2 + CB^2)$.

STEP 3 Complete a table Copy the table below and record your results in the first row. Then move point A to different locations and record the values for each triangle in your table. Make sure \overline{AB} is always the longest side of the triangle. Include triangles that are acute, right, and obtuse.

m∠C	AB	AB ²	AC	СВ	$AC^2 + CB^2$
76°	5.2	27.04	4.5	3.8	34.69
?	?	?	?	?	?
?	?	?	?	?	?

DRAW CONCLUSIONS Use your observations to complete these exercises

- 1. The Pythagorean Theorem states that "In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs." Write the Pythagorean Theorem in if-then form. Then write its converse.
- **2.** Is the converse of the Pythagorean Theorem true? *Explain*.
- **3.** Make a conjecture about the relationship between the measure of the largest angle in a triangle and the squares of the side lengths.

Copy and complete the statement.

- **4.** If $AB^2 > AC^2 + CB^2$, then the triangle is a(n) ? triangle.
- **5.** If $AB^2 < AC^2 + CB^2$, then the triangle is a(n) ? triangle.
- **6.** If $AB^2 = AC^2 + CB^2$, then the triangle is a(n) _? triangle.

440 Chapter 7 Right Triangles and Trigonometry