

Graphing Calculator Investigation A Follow-Up of

A Follow-Up of Lesson 13-3

Curve Fitting

If there is a constant increase or decrease in data values, there is a linear trend. If the values are increasing or decreasing more and more rapidly, there may be a quadratic or exponential trend. The curvature of a quadratic trend tends to appear more gradual. Below are three scatter plots, each showing a different trend.

Linear Trend

Quadratic Trend

Exponential Trend

With a TI-83 Plus, you can use the LinReg, QuadReg, and ExpReg functions to find the appropriate regression equation that best fits the data.

FARMING A study is conducted in which groups of 25 corn plants are given a different amount of fertilizer and the gain in height after a certain time is recorded. The table below shows the results.

Fertilizer (mg)	0	20	40	60	80
Gain in Height (in.)	6.48	7.35	8.73	9.00	8.13

Step 1 Make a scatter plot.

- Enter the fertilizer in L1 and the height in L2. **KEYSTROKES:** *Review entering a list on page* 204.
- Use **STAT PLOT** to graph the scatter plot.

KEYSTROKES: *Review statistical plots on page 204. Use* **ZOOM** *9 to graph.*

[-8, 88] scl: 5 by [6.0516, 9.4284] scl: 1

The graph appears to be a quadratic regression.

Step 2 Find the quadratic regression equation.

• Select QuadReg on the STAT CALC menu. **KEYSTROKES:** STAT ► 5 ENTER

The equation is about $y = -0.0008x^2 + 0.1x + 6.3$.

 R^2 is the **coefficient of determination**. The closer R^2 is to 1, the better the model. To choose a quadratic or exponential model, fit both and use the one with the R^2 value closer to 1.

(continued on the next page)

Graphing Calculator Investigation

Exercises

Plot each set of data points. Determine whether to use a *linear*, *quadratic*, or *exponential* regression equation. State the coefficient of determination.

1		
1.	X	У
	0.0	2.98
	0.2	1.46
	0.4	0.90
	0.6	0.51
	0.8	0.25
	1.0	0.13

2.		
2.	X	У
	1	25.9
	2	22.2
	3	20.0
	4	19.3
	5	18.2
	6	15.9

2		
3.	x	у
	10	35
	20	50
	30	70
	40	88
	50	101
	60	120

CONTENTS

•	X	У
	1	3.67
	3	5.33
	5	6.33
	7	5.67
	9	4.33
	11	2.67
	_	

4

TECHNOLOGY The cost of cellular phone use is expected to decrease. For Exercises 5–9, use the graph at the right.

- **5.** Make a scatter plot of the data.
- **6.** Find an appropriate regression equation, and state the coefficient of determination.
- **7.** Use the regression equation to predict the expected cost in 2004.
- **8.** Do you believe that your regression equation is appropriate for a year beyond the range of data, such as 2020? Explain.
- **9.** What model may be more appropriate for predicting cost beyond 2003?

