Graphing Calculator Investigation A Follow-Up

A Follow-Up of Lesson 13-3

Curve Fitting

If there is a constant increase or decrease in data values, there is a linear trend. If the values are increasing or decreasing more and more rapidly, there may be a quadratic or exponential trend. The curvature of a quadratic trend tends to appear more gradual. Below are three scatter plots, each showing a different trend.

Linear Trend

Quadratic Trend

Exponential Trend

With a TI-83 Plus, you can use the LinReg, QuadReg, and ExpReg functions to find the appropriate regression equation that best fits the data.

FARMING A study is conducted in which groups of 25 corn plants are given a different amount of fertilizer and the gain in height after a certain time is recorded. The table below shows the results.

Fertilizer (mg)	0	20	40	60	80
Gain in Height (in.)	6.48	7.35	8.73	9.00	8.13

Step 1 Make a scatter plot.

- Enter the fertilizer in L1 and the height in L2. **KEYSTROKES:** *Review entering a list on page* 204.
- Use STAT PLOT to graph the scatter plot.
 KEYSTROKES: Review statistical plots on page 204.
 Use ZOOM 9 to graph.

[-8, 88] scl: 5 by [6.0516, 9.4284] scl: 1

The graph appears to be a quadratic regression.

Step 2 Find the quadratic regression equation.

Select QuadReg on the STAT CALC menu.
 KEYSTROKES: STAT > 5 ENTER

The equation is about $y = -0.0008x^2 + 0.1x + 6.3$.

 R^2 is the **coefficient of determination**. The closer R^2 is to 1, the better the model. To choose a quadratic or exponential model, fit both and use the one with the R^2 value closer to 1.

Graphing Calculator Investigation

Graph the quadratic regression equation.

• Copy the equation to the Y= list and graph. KEYSTROKES: Y= VARS 5 ▶ 1

ZOOM 9

Step 4 Predict using the equation.

• Find the amount of fertilizer that produces the maximum gain in height.

On average, about 55 milligrams of the fertilizer produces the maximum gain.

KEYSTROKES: 2nd CALC 4

Exercises

Plot each set of data points. Determine whether to use a linear, quadratic, or exponential regression equation. State the coefficient of determination.

3.

<i>-</i> -	•					
1.	Х	У				
	0.0	2.98				
	0.2	1.46				
	0.4	0.90				
	0.6	0.51				
	0.8	0.25				
	1.0	0.13				

on equation of				
2.	Х	У		
	1	25.9		
	2	22.2		
	3	20.0		
	4	19.3		
	5	18.2		
	6	15.9		

X	y
10	35
20	50
30	70
40	88
50	101
60	120

X	У
1	3.67
3	5.33
5	6.33
7	5.67
9	4.33
11	2.67

TECHNOLOGY The cost of cellular phone use is expected to decrease. For Exercises 5-9, use the graph at the right.

- **5.** Make a scatter plot of the data.
- **6.** Find an appropriate regression equation, and state the coefficient of determination.
- 7. Use the regression equation to predict the expected cost in 2004.
- **8.** Do you believe that your regression equation is appropriate for a year beyond the range of data, such as 2020? Explain.
- **9.** What model may be more appropriate for predicting cost beyond 2003?

