## Introducing the TI-NSPIRE, SOLVing Linear EQUATIONS AND INEQUALITIES IN ONE VARIABLE

## Materials

- $\quad$ TI-Nspire ${ }^{\text {TM }}$ or TI-Nspire CAS ${ }^{\text {TM }}$
- Solving_Linear_Equations.tns
- TI-Nspire ${ }^{\text {TM }}$ software


## Mathematical Concepts

Solving equations

- Intersection points
- Linear
- One variable equations vs. inequalities


## Overview

Students who have had prior experience with any TI (handheld or computer) will learn to use TI-Nspire ${ }^{\text {TM }}$ more easily than others. It is important that you master some basic skills in order to facilitate learning.

## Classroom Setup

Students can work alone or in groups of two with one answering questions on paper and the other one using the calculator.

## Introduction

The following activity introduces the new TINspire by solving equations using graphing. This could be used as an introduction, but is truly a review of concepts in preparation for moving on to more advanced topics in algebra and interpreting function characteristics. Students will explore methods that help to solve onevariable equations/inequalities using visual representations.

## Getting Started.

1. Open a new document by pressing ( N⼏ Home and selecting ${ }_{〔}^{5}$ New Documents, (See
Figure 1).
2. Move to the next page using ctrr navPad Hér $^{\prime \prime}$ right wheel. Read the lesson objectives.

## Think First. Write each statement in a complete sentence.

3. If $y=2 x-4$ and $y=4 x+1$, then
$2 \mathrm{x}-4=$ $\qquad$
4. Create a new one-variable equation using substitution.
5. Click (M) and then select Move your cursor, using the NAVPAD, to the equation line and insert $\mathrm{y}=2 \mathrm{x}-4$ for $\mathrm{f} 1(\mathrm{x})$. Your line should appear in the window.

## 6. Click menu 6 to find the point

 where the line intersects with the $y$-axis.Use your NAVPAD to highlight the line
$\mathrm{y}=2 \mathrm{x}-4$. Click enter and then highlight the y axis, click enter.
7. A point should appear where the two lines meet. To find the exact coordinates, click (menu) (1) (6) Now move the cursor over the point and a shadow of the point should appear. Click enter twice. What is this point called? What are the coordinates?

7a. What is significant about all coordinates of x - intercepts?

Now, click menu (2) to insert a function table. Use the function table to help you find the x -intercept.

What are the coordinates of the x-intercept?


Figure 3


Figure 4


Figure 5


Figure 6

## Investigating Equation \#2:

8. Click / e (Figure 7) until the graphing area is highlighted. Scroll down to f ( x ) and hit Insert a new function $\mathrm{f} 2(\mathrm{x})=4 \mathrm{x}+1$. Your table should now include values for $\mathrm{f} 2(\mathrm{x})$.

Use the table to find the x and y intercepts of this equation.
x-intercept: $\qquad$
y-intercept: $\qquad$
9. To determine where the lines meet or where the expressions are equal, we must find a point on the coordinate plane where the value for x produces the same value for y for both equations. Use either the Points and Lines, Intersection steps (see Figure 5) or observe the table and find this unique point.
10. $\qquad$ is the point of intersection because
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ .

## Problem \#2

11. Given $2 x-1=3 x+9$, find the two functions that make up this one -variable equation.
f1 $(x)=$
f2 $(x)=$


Figure 7
12. Insert a new coordinate plane, Click ( (n) and then select $\langle 2\rangle$, and graph the two lines. Find the intercepts and the point of intersection or solution to the equation.

| Functions | $\mathrm{x}-$ <br> intercept | y - <br> intercept | Solution |
| :--- | :--- | :--- | :--- |
| F1(x) |  |  |  |
| F2(x) |  |  |  |

13. What is the difference between the point of intersection and the solution to the onevariable equation?
14. How are these two answers the same?

Problem \# 3:

1. What would $\mathrm{f} 1(\mathrm{x})$ and $\mathrm{f} 2(\mathrm{x})$ be if
$2 x-4<6$ ?
$\mathrm{F} 1(\mathrm{x})=$ $\qquad$
F2 $(\mathrm{x})=$
