Cubic Function Match d

Connect the Navigator computer to a data projector or Smart Board. Students will write functions to match the teacher graphs.

Teacher: Begin Class and using a calculator, Log In as Teacher

Students: Log In to Class

Teacher: **Open Activity Center**

Go to File, Load, Load Activity Settings and select Activity Fcn Match 5

Start Activity

Students: Enter Activity Center

> Student (and Teacher) calculators will display: Y1 =

Y2=

Y3 =

Y4=

Y5=

Teacher: From the <u>teacher calculator</u> type $Y1 = (x + 1)^3 + 2$ and Send.

Allow students a moment to view the graph (hand-sketch the graph). Then from

the *computer*:

Pause Activity Extensions Ouick Poll Poll Prompt

Submit **Open Response** question(s) similar to:

Describe some characteristic(s) of this function.

What is the domain of the function?

What is the range of the function?

Identify any intercepts.

Remind students that they may need to Alpha Lock in order to type what they intend and that they have a maximum of 20 characters – be brief.

Ask students to **Send** their responses.

After each Quick Poll question, select Stop Poll. Look at Poll Summary and

discuss student responses.

Exit Quick Poll and Resume Activity.

Students: Write a function in Y1 to match the graph on the screen. Students may resubmit

the function until they find a match.

Teacher: After students have matched the function, clear all activity data:

Stop Activity

Edit

Clear Activity Data

Start Activity

Type and **Send** the equations using the <u>teacher calculator</u>:

$$Y1=(x+1)^3+2$$

 $Y2=2(x+1)^3+2$

Teacher: Challenge students to match the graph of Y2. After students have matched the function, Y2, clear all activity data:

Stop Activity Edit Clear Activity Data Start Activity

Type and **Send** the equations using the <u>teacher calculator</u>:

$$Y1= (x + 1)^3 + 2$$

 $Y2= 2(x + 1)^3 + 2$
 $Y3= -0.4(x + 1)^3 + 2$

Ask students to quickly hand-sketch the graphs (graphs may not be totally visible when **Quick Poll** is open). From the *computer*:

Pause Activity Extensions Quick Poll Poll Prompt

Submit **Open Response** question(s) similar to:

How are the three functions the same or different?

How are the functions, Y2 and Y3, the same or different from functions in *Cubic Function Matches a, b and c*?

Do these three functions have the same domain? Explain.

Do these three functions have the same range? Explain.

Is there any connection between the algebraic representation of these functions and any intercepts or zeros of the functions?

After each Quick Poll question, select **Stop Poll**. Look at **Poll Summary** and discuss student responses.

Exit Quick Poll and then Resume Activity.

Students: Write a function to match the function in Y3.

Teacher: After students have matched the function clear all activity data:

Stop Activity

Edit

Clear Activity Data

Start Activity

Type and **Send** the equations using the <u>teacher calculator</u>:

$$Y1= (x + 1)^3 + 2$$

 $Y2= 2(x + 1)^3 + 2$
 $Y3= -0.4(x + 1)^3 + 2$

Teacher: Pause Activity

Extensions Quick Poll Poll Prompt

Submit **Open Response** question(s) similar to:

How were the algebraic representations of the functions Y2 and Y3 different from the function Y1?

What was the effect of this difference on the graphical representations of the functions?

Challenge students to write a similar function in Y4 with vertex (-2, 5) and more steep than the three teacher functions. Write a similar function in Y5 with vertex (-2, 5), less steep than any of the three teacher graphs and inverted.

Exit Quick Poll and then Resume Activity.

After student submissions **Pause Activity** and discuss any surprises students encountered and how they dealt with them. Are all student submissions the same two functions? Why or why not?

Stop Activity
Edit
Clear Activity Data

Reflect

Ask students to write a reflection on the mathematics of this exploration, use this as a journal entry, notebook entry or an exit slip. How is the algebraic representation of these functions the same as or different from those in *Cubic Matches a, b and c*? How do you algebraically represent a cubic function so that you can control placement of the vertex, steepness of the graph and whether it is, *generally*, rising or falling?

Important Housekeeping Notes:

The screen will become cluttered with student submissions and resubmissions. Use the computer to delete some incorrect submissions:

Select the graph to delete Delete Enter

Alternate method to eliminate screen clutter:

An alternative way to manage the clutter was used twice in this activity; clear all activity data:

Stop Activity
Edit
Clear Activity Data
Start Activity

Retype the teacher equations.