According to the Standards:
Instructional programs from preK-grade 12 should enable students to:

- Recognize and use connections among mathematical ideas
- Use the language of mathematics to express mathematical ideas precisely
- Select, apply and translate among mathematical representations to solve problems

In grades 9-12 students should

1. Students should develop an increased capacity to link mathematical ideas and a deeper understanding of how more than one approach to the same problem can lead to equivalent results.

Calculus Scope and Sequence: Antiderivatives
Keywords: antidifferentiation, indefinite integral, initial value
Description: This activity will use the indefinite integral to locate one of a family of curves given specific initial information.

Find the equation of a curve such that $y^{\prime \prime}=6 x-8$ and, at the point $(1,0) y^{\prime}=4$

The integral is found in F3-Calc-\#2 and requires the following syntax: (function, variable)
The solve function is found in F2-Algebra-\#1 and requires the following syntax: (expression $=$ expression, variable)

User tips:

- It is easier to store the functions in the $Y=$ menu. It makes them easier to access repeatedly.
- You can copy and paste a result from the homescreen by using the Up Arrow to highlight it and then pressing ENTER to paste it into the edit line. (You can also use the copy \& paste functions in the F1-Tools menu)

First store the function: $y^{\prime \prime}=6 x-8$ in $\mathrm{Y}=$ under y 1

Next, take the integral, include a " c ", solve for the initial condition, store in y2

- $\int \underline{1} 1(x) d x \quad 3 \cdot x^{2}-8 \cdot x$	$\begin{array}{r} \int y 1(x) d \times \quad 3 \cdot x^{2}-8 \cdot \times \\ \text { solve }\left(4=3 \cdot 1^{2}-8 \cdot 1+c, c\right) \\ c=9 \end{array}$	$\begin{aligned} & 21=6 \cdot x-8 \\ & 42=3 \cdot x^{2}-8 \cdot x+9 \\ & 93= \\ & 45= \\ & 96= \\ & 47= \end{aligned}$
$f(y 1(x), x)$	solve(4=3*1^2-8*1+c, c)	43 3 (x) $=$
MAIN RAMD AUTO FUNC $1 / 30$	MAIN RADD AUTO FUNC $2 / 30$	MAIN RADDALT FUNC

Now, repeat the process with y2 and store the result in y3:

Now, we can confirm graphically by graphing the result and examining the initial conditions:

Function in standard window: Passing thru $(1,0)$

You can use this same method to generate a family of curves for the same slope with a different initial point.

