Time required 40 minutes

ID: 10278

Activity Overview

Students will graph a figure in the coordinate plane. They will use list operations to perform reflections, rotations, translations and dilations on the figure, and graph the resulting image using a scatter plot.

Topic: Transformational Geometry

 Perform reflections, rotations, translations and dilations using lists and scatter plots to represent figures on a coordinate plane.

Teacher Preparation and Notes

- This activity is designed to be used in a high school geometry or algebra classroom.
- If an original point on the coordinate plane is denoted by (x, y), then each of the following • ordered pairs denotes a transformation: rotate 90° around origin
 - (x, -y) reflect over x-axis

(y, x) reflect over y = x

- (-x, y) reflect over y-axis
- (--y, x) (--x, --y)
 - rotate 180° around origin
 - rotate 90° around origin (y, --x)
- To perform a translation, add or subtract a constant from the list with the x-values or the v-values of the figure.
- To perform a dilation, multiply a constant scale factor by the list with the x-values or the • y-values of the figure.
- This activity is designed to be student-centered with the teacher acting as a facilitator while students work cooperatively. If desired, have students work in groups of 3. Each person in the group should enter a different combination of lists for Problem 2 and the aroup should discuss the results.
- To download the student TI-Nspire document (.tns file) and student worksheet, go • to education.ti.com/exchange and enter "10278" in the quick search box.

Associated Materials

- TransformationWithLists Student.doc •
- TransformationsWithLists.tns •

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the quick search box.

- Transformers (TI-Nspire technology) 8772
- "Fishing for Points"—Transformations Using Lists (TI-84 Plus or TI-73 Explorer) 8823
- Movin' and Changin' (TI-73 Explorer and TI-Navigator) 12217

Problem 1 – Creating a Scatter Plot

Students should open the file and read the directions on page 1.2.

On page 1.3, the spreadsheet contains two lists: **list1** contains the *x*-values and **list2** contains the *y*-values of a figure.

Students are to create a scatter plot of *list1 vs. list2* on page 1.4.

To do this, they need to select **MENU > Graph Type > Scatter Plot**, and choose **list1** as the *x*-list and **list2** as the *y*-list by pressing (var)

To create the figure, students need to connect the points by selecting **MENU** > **Actions** > **Attributes**, highlight the scatter plot, and choose **Points are connected**.

Note: If desired, students can hide the Entry Line by pressing (m) + **G**. The label of the scatter plot may be hidden as well.

Problem 2 – Reflections and Rotations

On page 2.1, students are told that the same lists, **list1** and **list2**, are repeated on page 2.2 and the same connect scatter plot is on page 2.4.

They need to enter **=-list1** in the formula bar of Column C to create **list3**, the opposite of each of the *x*-values in **list1**.

Then, they need to enter **=**–**list2** in the formula bar of Column D to create **list4**, the opposite of each of the *y*-values in **list2**.

) ا	1.4 2.1 2.2 🕨 *Transformatists 🔻 🛛 🕼						
4	^A list1	B list2	° _{list3}	∎ _{list4}			
٠			=='list1	=='list2			
1	2	3	-2	-3			
2	8	3	-8	-3			
3	8	1	-8	-1			
4	12	5	-12	-5			
5	8	9	-8	-9			
D	D list4:=-'list2						

TI-*nspire* 🐺 TImath.com

Students are to move to page 2.4, where they need to create scatter plot **s2** with connected points using the following combinations of lists.

For each combination, students need to determine what type of reflection occurred.

- A: $x \leftarrow \text{list3}$ and $y \leftarrow \text{list2}$ (over y-axis)
- B: $x \leftarrow \text{list1}$ and $y \leftarrow \text{list4}$ (over x-axis)
- C: $x \leftarrow \text{list2}$ and $y \leftarrow \text{list1}$ (over y = x)

The same set-up is used to explore rotations. Students are to read the directions on page 2.4 and then create a scatter plot **s2** on page 2.5 using the following combinations of lists.

For each combination, students need to determine what type of rotation occurred.

- D: $x \leftarrow \text{list4}$ and $y \leftarrow \text{list1}$ (90° around origin)
- E: $x \leftarrow \text{list2}$ and $y \leftarrow \text{list3}$ (-90° around origin)
- F: $x \leftarrow \text{list3}$ and $y \leftarrow \text{list4}$ (180° around origin)

Problem 3 – Translations

The same **list1** and **list2** are repeated in the spreadsheet on page 3.2. Students are to use **list3** and **list4** to translate the figure.

In the formula bar for **list3** (Column C), students need to type **=list1–5** to translate the *x*-values. In the formula bar for **list4** (Column D), they need to type **=list2+3** to translate the *y*-values.

On page 3.3, students are to create scatter plot **s2** with $x \leftarrow$ **list3** and $y \leftarrow$ **list4**.

Ask students: Where did the image shift? How many units left/right and how many units up/down?

Note: If desired, students can select **MENU > View > Show Grid** to better see the units of shift.

•	2.6 3.1	3.2 🕨 *	(P 🗙				
ŀ	^N list1	B list2	a _{list} 3	D _{list4}			
•			='list1-5	='list2+3			
1	2	3	-3	6			
2	8	3	3	6			
3	8	1	3	4			
4	12	5	7	8			
5	8	9	3	12			
D	D list4:='list2+3						

Add the scatterplot list3 vs. list4.

∄ ⊠

Then students are to edit the formulas for **list3** and **list4** to translate the figure into Quadrant 3.

Possible formulas are **=list1–15** for **list3** and **=list2–10** for **list4**.

Problem 4 – Dilations

The same **list1** and **list2** are repeated in the spreadsheet on page 4.2. Students are to use **list3** and **list4** to dilate the figure.

In the formula bar for **list3** (Column C), students need to type **=0.5*list1** and in the formula bar for **list4** (Column D), they need to type **=0.5*list2**.

On page 4.3, students are to create scatter plot **s2** with $x \leftarrow$ **list3** and $y \leftarrow$ **list4**.

Ask students: What happened to the image?

Then they are to edit the formulas for **list3** and **list4** to dilate the figure into Quadrant 3.

Possible formulas are =-0.5*list1 for List3 and =-0.5*list2 for list4.

4	4.1 4.2	4.2 4.3 🕨 *Transformatists 👻 📲 🕅					
	A list1	B list2	□ _{list3}	∎ list4			
+			=0.5*'list	=0.5*'list			
1	2	3	1.	1.5			
2	8	3	4.	1.5			
3	8	1	4.	0.5			
4	12	5	6.	2.5			
5	8	9	4.	4.5			
Z	D list4:=0.5·'list2						

