Transformations With Lists

Time required

ID: 10278
40 minutes

Activity Overview

Students will graph a figure in the coordinate plane. They will use list operations to perform reflections, rotations, translations and dilations on the figure, and graph the resulting image using a scatter plot.

Topic: Transformational Geometry

- Perform reflections, rotations, translations and dilations using lists and scatter plots to represent figures on a coordinate plane.

Teacher Preparation and Notes

- This activity is designed to be used in a high school geometry or algebra classroom.
- If an original point on the coordinate plane is denoted by (x, y), then each of the following ordered pairs denotes a transformation:

$(x,-y)$	reflect over x-axis	$(-y, x)$	rotate 90° around origin
$(-x, y)$	reflect over y-axis	$(-x,-y)$	rotate 180° around origin
(y, x)	reflect over $y=x$	$(y,-x)$	rotate 90° around origin

- To perform a translation, add or subtract a constant from the list with the x-values or the y-values of the figure.
- To perform a dilation, multiply a constant scale factor by the list with the x-values or the y-values of the figure.
- This activity is designed to be student-centered with the teacher acting as a facilitator while students work cooperatively. If desired, have students work in groups of 3. Each person in the group should enter a different combination of lists for Problem 2 and the group should discuss the results.
- To download the student TI-Nspire document (.tns file) and student worksheet, go to education.ti.com/exchange and enter "10278" in the quick search box.

Associated Materials

- TransformationWithLists_Student.doc
- TransformationsWithLists.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the quick search box.

- Transformers (TI-Nspire technology) - 8772
- "Fishing for Points"—Transformations Using Lists (TI-84 Plus or TI-73 Explorer) — 8823
- Movin' and Changin' (TI-73 Explorer and TI-Navigator) - 12217

Problem 1 - Creating a Scatter Plot

Students should open the file and read the directions on page 1.2.

On page 1.3, the spreadsheet contains two lists: list1 contains the x-values and list2 contains the y-values of a figure.

Students are to create a scatter plot of list1 vs. list2 on page 1.4.

To do this, they need to select MENU > Graph Type > Scatter Plot, and choose list1 as the x-list and list2 as the y-list by pressing var

To create the figure, students need to connect the points by selecting MENU > Actions >
Attributes, highlight the scatter plot, and choose Points are connected.

Note: If desired, students can hide the Entry Line by pressing © $\mathrm{ctrl}^{2}+\mathbf{G}$. The label of the scatter plot may be hidden as well.

Problem 2 - Reflections and Rotations

On page 2.1, students are told that the same lists, list1 and list2, are repeated on page 2.2 and the same connect scatter plot is on page 2.4.
They need to enter =-list1 in the formula bar of Column C to create list3, the opposite of each of the x-values in list1.

Then, they need to enter =-list2 in the formula bar of Column D to create list4, the opposite of each of the y-values in list2.

Students are to move to page 2.4, where they need to create scatter plot s2 with connected points using the following combinations of lists.
For each combination, students need to determine what type of reflection occurred.

A: $x \leftarrow$ list3 and $y \leftarrow$ list2 (over y-axis)
B: $x \leftarrow$ list1 and $y \leftarrow \operatorname{list} 4$ (over x-axis)
C: $x \leftarrow$ list2 and $y \leftarrow$ list1 (over $y=x$)
The same set-up is used to explore rotations. Students are to read the directions on page 2.4 and then create a scatter plot s2 on page 2.5 using the following combinations of lists.

For each combination, students need to determine what type of rotation occurred.

D: $x \leftarrow$ list4 and $y \leftarrow$ list1 (90° around origin)
$\mathrm{E}: x \leftarrow$ list2 and $y \leftarrow \operatorname{list} 3\left(-90^{\circ}\right.$ around origin)
F: $x \leftarrow$ list3 and $y \leftarrow \operatorname{list} 4$ (180° around origin)

Problem 3 - Translations

The same list1 and list2 are repeated in the spreadsheet on page 3.2. Students are to use list3 and list4 to translate the figure.
In the formula bar for list3 (Column C), students need to type $=$ list1-5 to translate the x-values. In the formula bar for list4 (Column D), they need to type $=$ list2+3 to translate the y-values.

On page 3.3, students are to create scatter plot s2 with $x \leftarrow$ list3 and $y \leftarrow$ list4.

Ask students: Where did the image shift? How many units left/right and how many units up/down?
Note: If desired, students can select MENU > View > Show Grid to better see the units of shift.

Add the scatterplot list3 vs. list4.

Then students are to edit the formulas for list3 and list4 to translate the figure into Quadrant 3.

Possible formulas are =list1-15 for list3 and =list2-10 for list4.

Problem 4 - Dilations

The same list1 and list2 are repeated in the spreadsheet on page 4.2. Students are to use list3 and list4 to dilate the figure.

In the formula bar for list3 (Column C), students need to type $=\mathbf{0 . 5}$ *ist1 and in the formula bar for list4 (Column D), they need to type $=0.5$ *ist2.

On page 4.3, students are to create scatter plot s2 with $x \leftarrow$ list3 and $y \leftarrow$ list4.

Ask students: What happened to the image?
Then they are to edit the formulas for list3 and list4 to dilate the figure into Quadrant 3.
Possible formulas are $=-\mathbf{0 . 5}$ *ist1 for List3 and $=-0.5^{*}$ list2 for list4.
$\sqrt{2.6}$ 3.1| 3.2 3.3 PRAD Auto REAL
Add the scatterplot list3 vs . list4.

44.14 .2	4.3 -	Transforma	ti...sts		
${ }^{\text {A }}$ list1	${ }^{\text {B }}$ list2	${ }^{\text {C }}$ list3	${ }^{\text {D }}$ list4		ล
-		$=0.5 *$ list	$=0.5 *$ list		
2	3	1.	1.5		
8	3	4.	1.5		
8	1	4.	0.5		
12	5	6.	2.5		
8	9	4.	4.5		
list4: $=0.5 \cdot$ list2				<	\geqslant

Add the scatterplot list3 vs . list4.

