\qquad
\qquad

Problem 1 - Graphical Exploration

On page 1.2, you will see the graph of $\mathbf{f 1}(x)=x^{n}$ and its derivative. (The graph of $\mathbf{f 1}$ is bold.) Use the slider to change the exponent of $\mathbf{f 1}$ and observe the changes to the graphs.

- What is the relationship between the degree of $\mathbf{f 1}$ and the degree of its derivative?

Problem 2 - Defining the Derivative of $\boldsymbol{x}^{\boldsymbol{n}}$

Examine the various derivatives of x^{n}, where n is an integer, below.

$$
\frac{d}{d x}\left(x^{2}\right)=2 \operatorname{gx} \quad \frac{d}{d x}\left(x^{3}\right)=3 \operatorname{g} x^{2} \quad \frac{d}{d x}\left(x^{4}\right)=4 g x^{3} \quad \frac{d}{d x}\left(x^{5}\right)=5 \operatorname{g} x^{4}
$$

- What patterns do you observe in the derivatives above?
- Create at least four other "true" examples. Include nonpositive values of n. Test your examples on page 2.3.
- Create a rule for taking the derivative of x^{n} with respect to x.

On page 2.5, define the function $f(x)=x^{n}$. Evaluate the limit $\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(h)}{h}\right)$.

- How does this compare to the rule you found for taking the derivative of x^{n} ?

Extension

- Does the Power Rule apply when n is a non-integer, rational number? Use page 3.1 to test your conjecture.
- Expand the binomial $(x+h)^{n}$. Use this to evaluate the limit you entered on page 2.5 .

