Law of Sines

Kara Harmon

Activity overview

Students will investigate all the cases in which the Law of Sines can be used to solve a triangle. An animation is provided in the lesson which will help students to gain a better understanding of the ambiguous case SSA.

Concepts

- Solving a right triangle using trigonometry
- Solving an oblique triangle using the Law of Sines

Teacher preparation

Students should recognize equal ratios and use them to solve a proportion.
Students should know what is meant by AAS, ASA, SSA.
The screenshots on pages 2-4 demonstrate expected student results. Refer to the screenshots on page 5-6 for a preview of the student .tns file.

Classroom management tips

This activity is designed to be student-centered with the teacher acting as a facilitator while students work cooperatively. The student worksheet is provided for students to record their answers to the questions asked in the activity. Students will be required to do calculations either on a separate calculator or by inserting a new calculator page into the provided file.

You may choose to do the last "Summarize" page as a whole-class discussion.

TI-Nspire Applications

Graphs \& Geometry, Notes, Calculator

TI-nspire

Discuss with students how to solve a triangle that does contain a right angle. The key to using the sine, cosine, and tangent ratios when finding parts of a triangle was the right angle.	LAW OF SINES If a triangle doesn't have a right angle, and only some parts of the triangle are known, how might you solve it? These triangles are oblique.
Encourage students to drag all vertices of the triangle and observe the results.	
Students may need to toggle ©t+r (tobto the Notes portion of this screen so that the entire note is visible. Remind students why these two cases are identified as AAS and ASA.	Write the 3 equal ratios from the previous The first triangle shown above has 3 known quantities (AAS). Find side "a" using two of

When students begin to solve the case AAS
they will begin with $\frac{a}{\sin A}=\frac{b}{\sin B}$. To use the ratio $\frac{c}{\sin C}$, they need to be reminded that $\angle A, \angle B$, and $\angle C$ are supplementary.

The endpoint of segment a can also be grabbed
and moved to a new location independent from
the animation button. Student may need to do
this to make the triangle as exactly as possible.

Students should show on the student worksheet that the calculator gives an undef answer if side a is less than the height of the triangle.

Note: This page was added to the file temporarily to show what happens in this case, it is not part of the student file.

The trouble is... in the case of SSA, first you must know if the construction of the triangle is even possible. Do you see why the triangle above is the SSA case? Side "a" is

\section*{| 1.5 | 1.6 | 1.7 | 1.8 |
| :--- | :--- | :--- | :--- |
| DEG AUTO REAL | | | |}

you could solve this triangle (right triangle trig or using the ratios from the Law of
Sines. Use the measures provided and the one you measured for side a.

When side a is \qquad than the height no
triangle is possible. Pick a value for side a that satisfies this ineqaulity. Try the Law of Sines. What happens?

TI-nspire

