\qquad
\qquad

Part 1 - Introduction

1. Consider the integral $\int \sqrt{2 x+3} d x$. Let $\boldsymbol{u}=\mathbf{2 x + 3}$.

41.2	1.3	1.4 * n tegrationB ion ∇	x]
$\begin{aligned} f(x) & =\sqrt{2 \cdot x+3} \\ u & =2 \cdot x+3 \\ \mathrm{X} \quad \mathrm{~d} u & =\mathrm{du}=\mathrm{=} \\ \mathrm{X} \quad g(u) & =? \\ \mathrm{X} \quad \int g(u) \mathrm{d} u & =? \\ \mathrm{X} \quad \int f(x) \mathrm{d} x & =? \end{aligned}$			

2. Now try $\int \sin (x) \cos (x) d x$ by letting $\boldsymbol{u}=\boldsymbol{\operatorname { s i n }}(\boldsymbol{x})$.
3. With the same integral, use $\boldsymbol{u}=\boldsymbol{\operatorname { c o s }}(\boldsymbol{x})$. How does this result compare to the previous result?
4. $\sin (x) \cos (x)$ can be rewritten as $\frac{1}{2} \sin (2 x)$ using the Double Angle formula.

What is the result when you integrate $\int \frac{1}{2} \sin (2 x) \mathrm{d} x$ using substitution?

Part 2 - Common Feature

Find the result of the following integrals using substitution. Check your work using the Notes pages in the .tns document.
5. $\int \frac{x+1}{x^{2}+2 x+3} d x$
6. $\int \sin (x) e^{\cos (x)} d x$
7. $\int \frac{x}{4 x^{2}+1} d x$
8. What do these integrals have in common that makes them suitable for the substitution method?

Extension

Use trigonometric identities to rearrange the following integrals and then use the substitution method to integrate.
9. $\int \tan (x) d x$
10. $\int \cos ^{3}(x)$

