The Remainder Theorem Using TI-Nspire CAS

by - Paul W. Gosse

Activity overview

This activity uses the CAS polyRemainder(, and related commands found in the Calculations-AlgebraPolynomial Tools menu, to explore the relationship between the remainder when $f(x)$ is divided by the linear factor ($x-\mathrm{a}$), and $f(\mathrm{a}$). The approach involves calculating remainders when dividing by ($x-\mathrm{a}$) for captured values of 'a' using CAS and a drag point for ' a ', and scatterplotting those values against the values of the function, $f(a)$ in real time. While the symbolism of the relationship expressed in the Reminder Theorem is clear, the visualization of plotting remainders against function values 'live', illustrates the symbolism in a new and concrete way. Problem 1 introduces the basic relationship between divisor, dividend, quotient, and remainder; Problem 2 uses CAS to explore the same relationship with polynomial functions; Problem 3 captures data from a ten-sample polynomial division situation to a spreadsheet and illustrates it as a function in real time; and Problem 4 poses some reflective questions on the various representations in the activity.

Concepts

Remainder Theorem, Synthetic Division, Factor Theorem, Zeros of a Function.

Teacher preparation

Teachers may wish to review the basic relationship between divisor, dividend, quotient, and remainder (although this is also done at the beginning of the activity) and long division or synthetic division for divisor ($x-\mathrm{a}$). Teachers will need to be familiar with the syntax of polyQuotient(and polyRemainder(. As seen on page 2.3 below, polyQuotient $\left(x^{3}, x-1\right)$ returns the quotient when x^{3} is divided by $x-1$.
Similarly, polyRemainder $\left(x^{3}, x-1\right)$ returns the remainder. Finally, the activity screens are set up for handheld view and may need re-positioning in computer view.

Classroom management tips

Students could be encouraged to confirm the calculations in 2.3 (as shown) through long division or synthetic division. It is important that students identify/locate the divisor, quotient and remainder among calculations on the top of the split screen.

Note: the polyRemainder(command does not seem to easily lend itself to working with lists, multiple inputs of any kind, or automatic data captures. Hence, the ten 'a' values referred to on page 3.2, were inserted in b1 and filled downward to b10 in advance on upcoming page 3.6. If you wish more points, simply continue to fill the related formula downward. There may be a better way. If so, let me know Θ
12.9
3.1
3.2

TI-Nspire Applications

Notes including (Q\&A), Calculator, G\&G, L\&S.

Step-by-step directions

The activity is self-reinforcing and self-directed. Limited preparation and explanation should be needed. Answers are offered below.

Assessment and evaluation

- Various questioning types lend themselves to assessing competence on this content such as multiple choice, short answer, graphical interpretation, etc. It would be encouraging and interesting to direct a question as indicated on pages 4.3 or 4.4. For example, $f(x) \div(x-1)$ is positive. Therefore, which is true about $f(1)$? (A) It is positive (B) It is negative (C) It is zero (D) No conclusion can be drawn.
- Answers: [2.8] $f(a)$. [3.7] The remainders when $f(x)$ is divided by $(x-a)$ appear to be the same as the function values $f(a)$. [3.9] The reminder values coincide with the function values. [4.3] The points on the graph where the remainder as indicated is positive are where $f(x)$ is positive. [4.4] The points on the graph where the remainder as indicated is negative are where $f(x)$ is negative. [4.5] These points lie on the x-axis. That is, neither above nor below the x-axis. [4.6] The points on the graph where the remainder as indicated is zero are the x-intercepts (i.e., where $f(x)=0$) which, of course, indicates that $(x-a)$ is a factor of $f(x)$.

Activity extensions

- The Factor Theorem is alluded to in the last bullet in Assessment and evaluation and is a natural extension of this activity

Student TI-Nspire Document

TheRemainderTheoremUsingTI-NspireCAS_EN.tns

4 | 1.5 | 2.1 | 2.2 |
| :--- | :--- | :--- |
| | $* T h e R e m a i . . . \quad E N$ | |

The following calculator page shows how the polyQuotient(and polyRemainder(
commands work.

They can be found in the:
Calculations-Algebra-Polynomial Tools menu.

In polynomial terms, since we're dividing by a linear factor (that is, a factor in which the degree on x is 1), then the remainder must be 'smaller', in degree, than the divisor. That is, it must be a constant.
So, when you divide a polynomial by $(x-\mathbf{a})$, your remainder will be a constant.

This activity uses the CAS poly Remainder(, and related commands found in the Calculations-Algebra-Polynomial Tools menu, to explore the relationship between the remainder when $f(x)$ is divided by the linear factor $(x-\mathbf{a})$, and $f(\mathbf{a})$.

1.31 .4 TheRemai..._EN 1.5 机 \mathbf{x}

In the equation,

$$
13=2(5)+3, \text { we can see }
$$

Dividend $=($ Quotient) $\cdot($ Divisor $)+$ Rem.
Let's explore this in general with functions using TI-Nspire CAS in Problem 2.

We can see $x^{3}=\left(x^{2}+x+1\right)(x-1)+1$, i.e., Dividend=(Quotient) $\cdot($ Divisor $)+$ Rem.
1.1
The Remainder Theorem for functions
is related to finding the remainder in a simple
division problem. For example,
$13 \div 5$ gives 2 with 3 remainder. That is,...
(1) $\frac{13}{5}$ gives 2 groups of $5,+3$ rem. or
(2) $13=2(5)+3$

The Remainder Theorem using TI-Nspire CAS

Finding Remainders

The Reminder Theorem for Polynomials is about dividing the polynomial by a linear factor $(x-\mathbf{a})$ where a is a real number.

We know, from long division of whole numbers, that your remainder has to be smaller than what you divided by.

2.5	2.6
$1 \rightarrow a$ polyRemainder $\left(x^{3}, x-a\right)$	1
$2 \rightarrow$ a.polyRemainder $\left(x^{3}, x-a\right)$	8
$3 \rightarrow a$ polyRemainder $\left(x^{3}, x-a\right)$	27
	$3 / 99$

2.6	2.7	2.8
Question		
What does it appear the remain_..EN •		
be when x^{3} is divided by $(x-a)$?		
Answer		

$|$| 2.7 | 2.8 |
| :--- | :--- |
| It certainly appears that the remainder when | |
| dividing $f(x)=x^{3}$ by $(x-a)$ is $\mathrm{f}(\mathrm{a})$. | |
| We explore graphing the same function rule, | |
| as well as its remainders when divided by | |
| $(x-a)$, in Problem 3. | |

2.9	3.1
In this Problem, we capture some	
x-coordinates, ($x 1$ values) on $y=x^{3}$ and use a	
spreadsheet to determine the remainders	
when $f(x)=x^{3}$ is divided by ($x-x 1$), i.e.,	
$(x-a)$, for 10 data captures, i.e., ten ' a '	
values.	

Page 3.5 shows the graph of $y=x^{3}$ with a drag point.

Page 3.6 shows a spreadsheet with columns $\times 1$, rem, and function.

In a moment, we will drag the point and manually capture ten $\times 1$ values.

4 3.2 3.3 *TheRemai..._EN 3.4 机 \mathbf{x}
As the ten $\times 1$ values are captured, rem is calculated using the formula:

$$
\text { polyremainder }(f 1(x), x-a 1)
$$

which has been filled down ten cells in the spreadsheet and automatically re-addresses
to polyremainder $(\mathbf{f} 1(x), x-b 1)$,
polyremainder $(\mathbf{f} 1(x), x-c 1)$, etc..
Now go to 3.5, move the drag point, and

The Remainder Theorem Using TI-Nspire CAS
by: Paul W. Gosse Grade level: secondary
Subject: mathematics
Time required: 45 minutes
Materials: TI-Nspire CAS

$|$| 3.10 | 4.1 | 4.2 |
| :--- | :--- | :--- |
| Now we know that the value of a polynomial | | |
| function at $x=a$ is equivalent to the remainder | | |
| when that function is divided by $(x-a)$. | | |

4.1	4.2
Question	
Given: $f(x)=q(x) \cdot(x-a)+$ rem when $f(x)$ is divided by $(x-a)$, where are the points on the graph of the function where the remainder is positive?	
Answer	

4.2	4.3
Question	
Given: $f(x)=q(x) \cdot(x-a)+$ rem when $f(x)$ is divided by $(x-a)$, Where are the points on the graph of the function where the remainder is negative?	
Answer	

4.3 4.4 4.5
Question
Given: $f(x)=q(x) \cdot(x-a)+$ rem when $f(x)$ is divided by $(x-a)$, where are the points on the graph of the function where the remainder is zero? Answer

$\|$4.4 4.5 Question At what points on $y=f(x)$ is the reminder when $\frac{f(x)}{(x-a)}=0$? What does this mean in terms of $f(x)$? Explain. Answer

