

Name _____ Class _____

Problem 1 – Symmetry group for a square

Identity

Sketch	Description	Inverse

Reflections

Sketch	Description	Inverse
	reflect over $x = 0$	reflect over $x = 0$
	reflect over <i>y</i> =	
	reflect over <i>y</i> =	
	reflect over <i>y</i> =	

Rotations

Sketch	Description	Inverse
	rotate around origin °	
	rotate around origin °	
	rotate around origin °	

- How many different transformations are in the symmetry group of a square? Include the identity.
- What do you notice about the inverse transformations? Describe them.

Problem 2 – Transformer matrices

- Find **S T2**. (**T2** is given in the table on the next page).
- What transformations could **T2** correspond to?

Complete the table.

Transformer Matrix	Sketch	Description
$T_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		no change
$T_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$		reflect over <i>x</i> = 0
$T_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$		
$T_3 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$		
$T_4 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$		
$T_5 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$		
$T_6 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$		
$T_7 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$		

Use the description columns to match the transformer matrices with their inverses. For example, T_1 is its own inverse.

Transformer Matrix	Inverse	Transformer Matrix	Inverse
$T_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		$T_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	$T_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
$T_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$		$T_3 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	
$T_4 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$		$T_5 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	
$T_6 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$		$T_7 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$	

• Multiply each transformer matrix in the table above by its inverse. What do you notice?

Use matrix multiplication to answer each question.

- What is the effect of applying T_3 followed by T_5 ?
- What is the effect of applying T_2 followed by T_3 ?

Problem 3 – Symmetry group for an equilateral triangle

Use these transformer matrices.

$$T_{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad T_{1} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad T_{2} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \qquad T_{3} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

Sketch	Description	Inverse	Transformer Matrix
			$T_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$