\qquad
\qquad

Problem 1 - Symmetry group for a square
Identity

Sketch	Description	Inverse
\square		

Reflections

Sketch	Description	Inverse
	reflect over $x=0$	reflect over $x=0$
	reflect over $y=__$	reflect over $y=_$

Rotations

Sketch	Description	Inverse
	rotate around origin____	
	rotate around origin____	
	rotate around origin___	

- How many different transformations are in the symmetry group of a square? Include the identity.
- What do you notice about the inverse transformations? Describe them.

Problem 2 - Transformer matrices

original square $S \quad$ image square S^{\prime}
(a, b)
(g, h)
(e, d)
(e, f)
$\xrightarrow{\text { transformation } T_{1}}$
$\left(a^{\prime}, b^{\prime}\right)$
$\left(g^{\prime}, h\right)$

$\left(e^{\prime}, f\right)$

$$
\times
$$

T_{1}

$$
\left[\begin{array}{ll}
a & b \\
c & d \\
e & f \\
g & h
\end{array}\right]
$$

$\times \quad\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
=
S^{\prime}
$\left[\begin{array}{ll}-a & b \\ -c & d \\ -e & f \\ -g & h\end{array}\right]$

- Find $\boldsymbol{S} \cdot \boldsymbol{T 2}$. ($\boldsymbol{T 2}$ is given in the table on the next page).
- What transformations could $\boldsymbol{T} 2$ correspond to?

Complete the table.
$\left.\begin{array}{|c|c|c|}\hline \text { Transformer Matrix } & \text { Sketch } & \text { Description } \\ \hline T_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] & & \text { no change } \\ \hline T_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] & & \\ \hline T_{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] & & \text { reflect over } x=0 \\ \hline T_{3}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right] & & \\ \hline T_{4}=\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right] & & \\ \hline T_{5}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] & & \\ \hline T_{7}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \\ -1 & 0\end{array}\right] \quad\left[\begin{array}{cc}0 & \\ \hline\end{array}\right.$

Transformers

Use the description columns to match the transformer matrices with their inverses. For example, T_{1} is its own inverse.

Transformer Matrix	Inverse	Transformer Matrix	Inverse
$T_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$		$T_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$	$T_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
$T_{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$	$T_{3}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$		
$T_{4}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$T_{5}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$		
$T_{6}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$	$T_{7}=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$		

- Multiply each transformer matrix in the table above by its inverse. What do you notice?

Use matrix multiplication to answer each question.

- What is the effect of applying T_{3} followed by T_{5} ?
- What is the effect of applying T_{2} followed by T_{3} ?

Problem 3 - Symmetry group for an equilateral triangle
Use these transformer matrices.
$T_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad T_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \quad T_{2}=\left[\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right] \quad T_{3}=\left[\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right]$

Sketch	Description	Inverse	Transformer Matrix
			$T_{0}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

