

AP* CHEMISTRY Educator Edition

A BREATH OF FRESH AIR

TI-Nspire[™] Lab Activity

The Math and Science @ Work problem, Oxygen Generator System, may be used to reinforce and assess the material learned from this lab.

Instructional Objectives

Students will

- construct an electrolytic cell;
- determine the number of moles and mass of oxygen produced;
- determine the number of electrons transferred; and
- compare their experimental electrolytic cell to the Oxygen Generator System used on the International Space Station.

Teacher Preparation

- Distribute the TI-Nspire file, *Breath_Fresh_Air.tns*, to the students' handhelds.
- Have the following available for each lab station:
 - 9-12 V DC power sources (less than 0.5 amperage)
 - Electrolysis apparatus (students can use a Hofman tube or two graduated gas tubes and electrodes in a beaker)
 - Vernier EasyLink Cables
 - o Vernier Current Probes
 - Three wires with alligator clips
 - o Potassium hydroxide (KOH) with a balance
 - o Scoop

Safety Considerations

- Students should wear safety goggles and aprons.
- Students should avoid physical contact with potassium hydroxide. Potassium hydroxide is a toxic, corrosive material that causes severe burns to skin, eyes, respiratory tract, and gastrointestinal tract. Refer to MSDS sheet when using this material with your students.
- Students should avoid contact with any bare metal in the electrical circuit.

Grade Level 10-12

Key Topic Electrolysis

Teacher Prep Time 20 minutes

Lab Time 90 minutes

Materials/Equipment

- TI-Nspire Handhelds - TI-Nspire File:
- Breath_Fresh_Air.tns
- Electrolysis apparatuses
- DC power sources
 Vernier EasyLink[™]
- Cables
- Vernier Current Probes
- Wires with alligator clips
- Potassium hydroxide

- Scoop

AP Course Topics

Reactions:

- Reaction Types
- Stoichiometry

NSES Science Standards

- Physical Science
- Science and Technology
- History and Nature of
- Science

*AP is a trademark owned by the College Board, which was not involved in the production of, and does not endorse, this product.

Class Time Required

This lab requires 90 minutes. If the class period is 60 minutes or less, have students read through the background material, answer the pre-lab questions, and set up for the lab on the first day. On the second day, students may complete the lab and the lab analysis questions.

- Introduction: 10 minutes
- Student Work Time: 70 minutes
- Post Discussion: 10 minutes

AP Course Topics

Reactions

- Reaction types
 - o Oxidation-Reduction reactions
 - Oxidation number
 - The role of the electron in oxidation-reduction
 - Electrochemistry: electrolytic and galvanic cell; Faraday's laws; Nernst equation; prediction of direction of redox reactions
- Stoichiometry
 - o lonic and molecular species present in chemical systems: net ionic equations
 - o Balancing of equations including those for redox reactions
 - Mass and volume relations with emphasis on the mole concept, including empirical formulas and limiting reactants

NSES Science Standards

Physical Science

Chemical Reactions

Science and Technology

Abilities of Technological Design

History and Nature of Science

Science as a Human Endeavor

Background

This lab activity is part of a series of activities that applies Math and Science @ Work in NASA's scientific labs.

The International Space Station (ISS) is a research laboratory being assembled in low Earth orbit. Construction of the ISS began in 1998 and is scheduled for completion in 2011. Crews aboard the ISS conduct experiments in biology, chemistry, physics, medicine and physiology, as well as in astronomical and meteorological observations. The microgravity environment of space makes the ISS a unique laboratory for the testing of spacecraft systems that will be required for future exploration missions beyond low Earth orbit.

The ISS travels in orbit around the Earth at an average speed of 27,743.8 km/h (17,239.2 mph), completing 15.7 orbits per day. The ISS is operated jointly among five participating space agencies: the United States' National Aeronautics and Space Administration (NASA), the European Space Agency

(ESA), the Russian Federal Space Agency (RKA), the Japan Aerospace Exploration Agency (JAXA), and the Canadian Space Agency (CSA).

An international crew, typically consisting of six members, resides on the ISS for approximately six months at a time. Since the first crew aboard the ISS in 1998, humans have maintained a permanent presence in space. In addition to the crew, personnel on the ground (located in Mission Control Centers) direct the operations of the ISS.

The ISS requires a constant supply of oxygen to keep the astronauts safe and in top condition. Because oxygen is a consumable on the ISS, there must be a continuous source of new oxygen. On Earth, new oxygen is produced from plants through the process of photosynthesis. On the ISS, there is not enough space to carry the amount of plant material that would be required to produce the oxygen needed. Instead, oxygen is supplied by a variety of sources.

Figure 1: The ISS orbiting the Earth as observed by Space Shuttle Discovery on March 26, 2009

The primary sources of oxygen are the Russian-built Elektron Oxygen Generator unit and NASA's Oxygen Generator System (OGS). Both convert water collected from a variety of sources within the ISS (e.g. urine, wastewater, and condensation) into hydrogen (H2) and oxygen (O2) through the process of electrolysis. Potassium hydroxide (KOH) is used as an electrolyte, creating a solution that is 30% KOH. When a current is placed on the solution, oxygen and hydrogen are produced. The oxygen is released into the ISS atmosphere and the hydrogen is fed into the Sabatier Reactor, another piece of equipment which combines H2 with CO2 to create water and methane. The water then feeds back into the OGS, venting the methane into space and completing a regenerative life support cycle on the ISS.

AP CHEMISTRY Educator Edition

Figure 2: A mock-up of the OGS located in the Tranquility Module on the ISS

Figure 3: Astronaut Daniel W. Bursch working on the Elektron Oxygen Generator in the Zvezda Service Module on the ISS

Lab Procedure

With your lab partner, gather the required materials/equipment. On your TI-Nspire handheld, open the file, *Breath_Fresh_Air*. Read the provided information and answer the Pre-Lab questions that follow (TI-Nspire pages 1.1-1.9). You will then be ready to start the lab activity. Go to TI-Nspire page 2.1 and follow the provided instructions. Following the Lab Activity, proceed to the Lab Analysis on TI-Nspire pages 2.8-2.15.

Solution Key

Throughout this activity, students are given most of the information and questions in the TI-Nspire file, *Breath_Fresh_Air*. Students are also provided with the questions on the student handout. Some screenshots have been provided throughout the solution key to show what students will be reading on their handhelds. A TI-Nspire file with the solutions, *Breath_Fresh_Air_Solutions*, is also provided for the teacher to discuss solutions with students using TI-Nspire software and a projector.

Mission (TI-Nspire pages 1.1 – 1.3)

The International Space Station (ISS) must continually regenerate oxygen. NASA's Oxygen Generator System (OGS) is one source of oxygen on the ISS. Figure 4 depicts an electrolysis process similar to the one used by the OGS to produce oxygen. The OGS was designed to be capable of providing enough oxygen for at least six crew members on the ISS. On average, a crew of six will consume 5.44 kg of oxygen in a 24-hour period.

AP CHEMISTRY Educator Edition

You are one of the NASA design engineers for the OGS system and you need to determine the most efficient design of the system in order to provide the oxygen needed for the crew to live and work.

Figure 4: Diagram depiction of the electrolysis process used in the OGS system in one of multiple electrolytic cells

Pre-Lab Questions (TI-Nspire pages 1.4-1.9)

1.4 How many moles of oxygen gas are present in 5.44 kg of oxygen?

170. moles O₂

Students should show work on the calculator section of TI-Nspire page 1.4 as shown.

1.5 How many moles of water are needed to produce 5.44 kg of oxygen gas?

340. moles H_2O

1.3 1.4 1.5 Brea	th_Fres11 🗢 🛛 🐔 🔀
How many moles of water are needed to produce 5.44 kg of oxygen gas?	© 170 mol O2 convert to moles of H2O 170. 2 340.
0.170 mol H ₂ O	
0.340 mol H ₂ O	
170. mol H₂O	
340. mol H₂O	☑ 2/99

1.6 What is the balanced reaction equation for the electrolysis of water?

 $2H_2O \rightarrow 2H_2 + O_2$

1.7 How many electrons are exchanged in the electrolysis of two water molecules?

4 electrons

1.8 How many moles of electrons are exchanged if 5.44 kg of oxygen is produced in 24 hours?

680. mol e⁻

1.9 Given that a Faraday is $\frac{96,500 \text{ C}}{1 \text{ mol e}^-}$, how many coulombs (C) are needed to produce 200.0 mol e⁻?

1.930×10⁷ C

Lab Activity (TI-Nspire pages 2.1-2.7)

Students are given lab instructions in the TI-Nspire file. Screenshots are provided below ordered from left to right. Note that even though one calculator is collecting the data, all students' handhelds may be used to complete the activities using the data found from the collection.

Figure 5: Set up of electrolysis apparatus used for the lab

AP CHEMISTRY Educator Edition

 For connection 1, connect the current probe in the circuit between the DC source and the electrolysis apparatus.

5. Plug the current probe into the EasyLink cable then into the TI-Nspire.

 On the DataQuest Application on page 2.5 set the collection mode to time based for 2 second samples for 240 seconds.

✓ 2.5 2.6 2.7 ▶ *Breath_Fres_-11 ↓
 2. Strike data outside the region selected (press ctrl and menu, then select Strike Data > Outside Selected Region).

 Analyze the data and calculate the statistics (press ctrl and menu, then select Analyze > Statistics). Record the mean amperage below. Press enter to store it.
 amp:=0

2.5 2.6 2.7 ▶ *Breath_Fres_-11 ♥
1. On page 2.5, select the region of the graph where current was applied.
▶ Place curser at the last point where current

- Click and hold until double arrow appears.
- Swipe finger to the left most point where current was applied.
- Click to set the left bound.

was applied.

Lab Questions (TI-Nspire pages 2.8-2.9)

2.8 Which tube contains oxygen?

The tube with lesser volume

2.9 What term describes the process that occurs when oxygen is produced?

Oxidation

Lab Analysis (TI-Nspire pages 2.10-2.16)

Screenshots below show sample data for the experiment. Students' data will vary and this will cause a variance in the answers to the questions asked.

2.12 Calculate the moles of oxygen produced.

Students will first need to convert volume to liters and temperature to Kelvin.

 $1.13 \times 10^{-4} \text{ mol } O_2$

	· 🐴 🗙	
©Convert temperature to Kelvin		
21.+273.2	294.2	
©Calculate the number of moles of O2		
0.00305.0.897 0.	000113 🖌	
	6/99	
Calculate the moles of oxygen produced.		
vol_o2 + 3.05; temp_o2 + 21.;		
press_o2 ► 0.897		

AP CHEMISTRY Educator Edition

2.13 How many moles of electrons were needed to produce the number of moles of oxygen found in question 2.12?

Using the students answer from the last problem, they should have four times as many electrons as oxygen molecules.

 $4.52 \times 10^{-4} mol e^{-1}$

2.14 How many moles of electrons passed through the current probe?

 $4.27 \times 10^{-4} mol e^{-1}$

	\bigtriangledown	
©Calculate moles of electrons using faraday	a	
amp time_amp 1 96500	0.0004	27
		3/99
How many moles of electrons passed through the current probe?		
time_amp ► 99.5; amp ► 0.414		

2.15 Compare the number of electrons that passed through the current probe and the number of electrons needed to produce oxygen. Give an explanation for the difference.

Student answers will vary for this question. DC power sources have a variability based on their quality. Because of the variability, the amperage is taken as an average of the amperage therefore; the number of moles of electrons measured by current may turn out slightly different than the moles of electrons that were measured by the volume of oxygen generated.

AP CHEMISTRY Educator Edition

2.16 If the OGS runs at 50. amps, how many electrolytic cells are needed to produce the oxygen required by six astronauts if each astronaut needs 0.91 kg of oxygen in a 24-hour period?

$\frac{50. C}{1 s} \cdot \frac{3,600 s}{1 hr} \cdot \frac{24 hr}{1 day} \cdot \frac{1 mol e^{-}}{96,500 C} \cdot \frac{1 mol}{4 mol}$	$\frac{O_2}{O_2} \times \frac{32.0 \text{ g}}{1 \text{ mol } O_2} = 358 \text{ g } O_2$
6 astronauts $\cdot \frac{0.91 \text{ kg}}{1 \text{ astronaut}} = 5.46 \text{ kg}$	
358 g $O_2 \cdot \frac{1 \text{ kg}}{1,000 \text{ g}} = 0.358 \text{ kg } O_2$	
5.46 kg $\cdot \frac{1 \text{ cell}}{0.358 \text{ kg}} = 15 \text{ cells}$	
 2.15 2.16 2.17 ▶ *Breath_Fres11	
©Convert 50 amps over 24 hours to moles	©Convert grams O₂ to kg O₂ generated by one cell
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	358· <u>1</u> 000
©Calculate kg of O₂ needed by 6 astronauts	©Calculate the number of cells to produce 5.04 kg of O ₂

5.46

8/99

Contributors

This problem was developed by the Human Research Program Education and Outreach (HRPEO) team with the help of NASA subject matter experts and high school AP Chemistry instructors.

NASA Experts

0.91

1

Tess Caswell – Environmental and Thermal Operating Systems (ETHOS) Operator, International Space Station Mission Control Center, NASA Johnson Space Center

1

0.358

5.46

Sarah Hargrove – Environmental and Thermal Operating Systems (ETHOS) Operator, International Space Station Mission Control Center, NASA Johnson Space Center

AP Chemistry Instructor

Todd Morstein – Texas Instruments T³ (Teachers Teaching with Technology[™]) National Instructor, Glacier High School, Kalispell School District, MT

4

0.358

15.2514

8/99