## Everything you need to do with Linear Regression using the TI-Nspire: Olympic Swimming (part 1)

Here are the Olympic gold medalists and winning times from the men's 100 m Freestyle event.

| Year | Gold Medal Winner | time |
| ---: | :--- | ---: |
| 1896 | Alfred Hajos, Hungary | $1: 22.2$ |
| 1904 | Zoltan de Halmay, Hungary | $1: 02.8$ |
| 1908 | Charles Daniels, United States | $1: 05.6$ |
| 1912 | Duke Kahanamoku, United States | $1: 03.4$ |
| 1920 | Duke Kahanamoku, United States | $1: 01.4$ |
| 1924 | John Weissmuller, United States | 59.0 |
| 1928 | John Weissmuller, United States | 58.6 |
| 1932 | Yasuji Miyazaki, Japan | 58.2 |
| 1936 | Ferenc Csik, Hungary | 57.6 |
| 1948 | Wally Ris, United States | 57.3 |
| 1952 | Clark Scholes, United States | 57.4 |
| 1956 | Jon Henricks, Australia | 55.4 |
| 1960 | John Devitt, Australia | 55.2 |
| 1964 | John Schollander, United States | 53.4 |
| 1968 | Mike Wenden, Australia | 52.2 |
| 1972 | Mark Spitz, United States | 51.22 |
| 1976 | Jim Montgomery, United States | 49.99 |
| 1980 | Jorg Woithe, East Germany | 50.40 |
| 1984 | Rowdy Gaines, United States | 49.80 |
| 1988 | Matt Biondi, United States | 48.63 |
| 1992 | Aleksandr Popov, Unified Team | 49.02 |
| 1996 | Aleksandr Popov, Russia | 48.74 |
| 2000 | Pieter van den Hoogenband, Netherlands | 48.30 |
| 2004 | Pieter van den Hoogenband, Netherlands | 48.17 |
| 2008 | Alain Bernard, France | 47.21 |

Determine the explanatory variable $\qquad$ and response variable $\qquad$

Enter the data and make a scatterplot: Get a new list page: Home $\rightarrow 3$ : Lists and

Spreadsheets. Use the first list (A) and name it "year" (no quotes needed).


Enter the years 1896 and 1900 to start the pattern in cells 1 and 2 (even though 1900 is not in the list). Drag the cursor over the two years to highlight them.


Go to menu $\rightarrow$ 3: Data $\rightarrow$ 3: Fill Down $\rightarrow$ hit enter. The cells will become outlined. Drag the darkened area down to cell 30 . The pattern will "fill" the list "years" following your pattern.
Delete the years when there was no 100 m swim event or Olympic games-1900, 1916, 1940, 1944). Use ctrl $\rightarrow$ menu $\rightarrow 5$ : Delete Cell (you can delete 1940 and 1944 by highlighting them both).

Label the second column (B) "time" and enter the times in seconds (sorry, there's no short cut).

With one cell of the "time" list selected, go to menu $\rightarrow 4$ : Statistics $\rightarrow$
1: Stat Calculations... $\rightarrow$ 1: One-Variable Statistics $\rightarrow$ enter. Use 2 for Number of Lists $\rightarrow$ OK. Use "time" for X1
List $\rightarrow$ tab $\rightarrow$ Frequency List: $1 \rightarrow 3$ tabs $\rightarrow 1^{\text {st }}$ Result Column: $\mathrm{c} \rightarrow \mathrm{tab} \rightarrow \mathrm{OK} \rightarrow$ enter.

In the second row you should see $\Sigma x=$ 1391.18 (a good way to check data entryunlikely to have two errors that cancel out).



To graph the scatterplot: Insert a new page by going to home $\rightarrow 5$ : Data \& Statistics.
"Click to add variable" $\rightarrow$ select "year" for the explanatory variable $\rightarrow$ get a dot plot. Click on the center of the left edge of the screen to add the variable "time" $\rightarrow$ scatterplot. Is the data approximately linear? Positive or negative?

Go back to the Page 1 ( $\operatorname{ctrl} \rightarrow$ left click) and move to list E. Find the regression model: menu $\rightarrow$ 4: Statistics $\rightarrow$ 1: Stat Calculations $\rightarrow$ 4: Linear Regression ( $a+b x$ ). Choose "year" for X List and "time" for Y List $\rightarrow$ tab to OK.

|  | 1.11 .2 | RAD AUTO REAL |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | D | E | F | G |
| - | = OneVar | = OneVar(t |  | =LinRegBx |
| 1 | One-Var... | One-Var... | Title | Linear Re.. |
| 2 | 1956.32 | 55.6472 | RegEqn | $a+b^{*} x$ |
| 3 | 48908. | 1391.18 | a | 456.452 |
| 4 | 9.57075 E 7 | 78852.3 | b | -0.204877 |
| 5. | 34.0376 | 7.73799 | $r^{2}$ | 0.812174 |
| 6 | 33.3499 | 7.58165 | r | -0.901207 |
| = "Linear Regression (a+bx)" |  |  |  |  |

Write the equation in context. Interpret $r, r$-squared, the $y$-intercept and slope. predicted time $=456.45-.2049$ (Olympic year)
$r=-0.9012-$ strong, negative association between (Olympic) year and 100 m winning men's swim times.
$r^{2}=0.8122-$ approximately $81 \%$ of the variation in $100 m$ winning times can be attributed to the linear relationship with Olympic year
$y$-intercept $=456.45-$ in year 0 AD , our model predicts a winning 100 m time of approximately 456.45 seconds (a nonsense value indicating our model does not hold at the $y$-intercept)
slope $=-0.2049-$ for every one year increase in Olympic date, the $100 m$ time decreases by 0.2049 sec . (or since Olympics are held every four years, for each successive Olympic game, our model predicts the 100 m time will decrease about 0.82 seconds)

Use ctrl $\rightarrow$ right to go back to the scatterplot page. Use menu $\rightarrow$ 4: Analyze $\rightarrow$
6: Regression $\rightarrow$ 2: Show Linear ( $a+b x$ ) to see the equation and plot the line on the graph.


No Olympic games were held in 1918, 1940, and 1944. Use the regression equation to predict the winning times in those years if the Olympics had been held (and 1900)
1900: 1916: 1940: 1944:

| 1.1 | 1.2 |
| :--- | ---: |
| 1.3 | RAD AUTO REAL |
| $\operatorname{stat.RegEgn}(1900)$ | 67.1859 |
| $\operatorname{stat.RegEgn}(1916)$ | 63.9078 |
| $\operatorname{stat.RegEgn}(1940)$ | 58.9908 |
| $\operatorname{stat\cdot RegEgn}(1944)$ | 58.1713 |
| 1 |  |

Use a calculator page for this: home $\rightarrow 1$ : Calculator. ctrl $\rightarrow$ menu $\rightarrow$ stat.regeqn.

Insert the year inside the ( ) $\rightarrow$ enter. To get additional years you can repeat the above or go up to the equation and use copy and paste: $\operatorname{ctrl} \rightarrow$ menu $\rightarrow 3$ : copy / paste

In 1980 an East German, Jorg Woithe, won with a time of 50.40 seconds (the US did not attend the Moscow Olympics). Calculate the value of his residual $($ actual time - expected time $)=(y-\hat{y})$.
$\operatorname{ctrl} \rightarrow$ menu $\rightarrow$ stat.regeqn. Insert 1980 inside the ( ) $\rightarrow$ enter. Subtract the answer from 50.4 to find the residual: ( 50.4 - ctrl ans).

Find the dot on the graph for 1980 (appears as red in the software and as dark grey on the handheld). Is the dot above the line or below the line? Does that mean he ran faster or slower than was expected?

