\qquad
\qquad

Problem 1 - Exact Probabilities

To calculate the probability of exactly r successes in n Bernoulli trials is ${ }_{n} C_{r} \cdot p^{r} q^{n-r}$.
This formula only works in trials where there is a binomial distribution and the events are independent of each other.

On page 1.5, use the Bernoulli formula to determine the probability that a packet of ten memory chips with an average of 2% defective chips has no defects.

In this case, $n=10, r=0, p=0.02, q=0.98$.

- $P(0)=$

Now, verify your calculations using the Binomial Pdf command from the Probability menu. Enter the parameters to that $n=10, p=0.02$ and x-value $=0$.

On page 1.8, change the values in cells E1 and E2 to calculate the probabilities of 1, 2, 3,4 , and 5 defective memory chips.

Then use the spreadsheet to find the probabilities of a packet of 25 chips with an average of 2% defective and a packet of 10 chips with an average of 30% defective.

Enter the probabilities in the table at the right.

	$n=10$ $p=0.02$	$n=25$ $p=0.02$	$n=10$ $p=0.3$
0	\cdot		
1			
2			
3			
4			
5			

- How does the distribution of probabilities for 30% defective compare to the distribution of 2% defective?

Problem 2 - Cumulative Probabilities

Let's explore the first example where memory chips were bought in packets of ten where 2% of the memory chips are defective on average. On page 2.2, calculate the probability that there are less than three defective memory chips.

Use the probabilities of 0,1 , and 2 that have already been calculated in Problem 1.

- $\quad P$ (less than 3 defects) $=$

To verify your answer, use the Binomial Cdf command in the Probability menu. Enter the parameters so that $n=10, p=0.03$, the lower bound is 0 and upper bound is 2 .

How Many?
HowMany.tns

Problem 3 - Bernoulli Probability Distributions

On page 3.2 the same spreadsheet from page 1.8 is used, but now a scatter plot shows the distribution of the probabilities. Click the slider to change the p-value in cell E2 from 0.1 to 1 in increments of 0.1 and observe the changes.

- What happens to the distribution when the p-value is closer to 0 ? When the p-value is closer to 1?
- What does the distribution appear to look like when $p=0.5$. Explain why this happens.

