Thursday Night PreCalculus, October 26, 2023

New Functions from Old: Inverses, Transformations, and Compositions

Problems

1. The graph of f is given in the figure. Match each equation with its graph and give a reason for each choice.

$$(\mathbf{a}) \ y = f(x-4)$$

$$(b) y = f(x) + 3$$

(c)
$$y = 2f(x - 8)$$

$$(\mathbf{d}) \ y = \frac{1}{2} f(x)$$

$$(e) y = -f(x+4)$$

(e)
$$y = -f(x+4)$$
 (f) $y = -f(\frac{1}{2}(x-8)) - 2$

2. Find (a) f + g, (b) f - g, (c) fg, and (d) f/g, and state their domains.

(i)
$$f(x) = 2^x$$
, $g(x) = 3^x$

(ii)
$$f(x) = \log x$$
, $g(x) = \ln x$

(iii)
$$f(x) = x^3 + 2x^2$$
, $g(x) = -2x^2 - 1$

(iv)
$$f(x) = \sqrt{4-x}$$
, $g(x) = |x+3|$

3. Find the functions (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$, and state their domains.

(i)
$$f(x) = 2^x$$
, $g(x) = 3x$

(ii)
$$f(x) = 2^x$$
, $g(x) = \log x$

(iii)
$$f(x) = \sqrt{x+1}$$
, $g(x) = -2x + 3$

(iv)
$$f(x) = \frac{x}{x+1}$$
, $g(x) = \cos 2x$

4. Use the graphs of f and g to evaluate each expression, or explain why it is undefined.

(a)
$$f(g(2))$$

(b)
$$g(f(4))$$

(c)
$$(f \circ g)(-2)$$

(d)
$$(g \circ f)(6)$$

(e)
$$(g \circ g)(-2)$$

$$(\mathbf{f}) \ (f \circ f)(0)$$

(g)
$$(g \circ f)(5)$$

(h)
$$(f \circ g \circ f)(4)$$

(h)
$$(f \circ g \circ f)(4)$$
 (i) $(g \circ f \circ g)(-2)$

5. Find a formula for the inverse of the function.

(a)
$$f(x) = 1 + \sqrt{3 + 7x}$$

(b)
$$f(x) = \frac{4x-1}{2x+3}$$

(c)
$$f(x) = \sqrt{1 - x^2}$$
, $0 \le x \le 1$

(d)
$$f(x) = 3 + \log_2 x$$
, $x > 0$