Systems Approach to Recursion

Systems of equations may also be applied to finding the closed recursive（or explicit） form of a function．The recursive requires that we know the previous value in a sequence to find the subsequent．For instance：Consider the sequence $4,7,10,13,16, \ldots$ We can see immediately that the values are changing by a positive 3 at each step（that is－we add three to the present value to arrive at the next $(4+3=7,10+3=13$ ，and so on $)$ ．

In a linear sequence such as this one，we can see that the difference of one value to the next is constant in the very first iteration of our search：

4		7		10		13	
$\\) & & \(八$		ハ		ハ			
	3		3		3		3

Where each new value is a consistent distance from the previous，so we would say：

$$
\begin{array}{ll}
a_{n}=a_{n-1}+d & \mathrm{a}_{\mathrm{n}}=\text { Value of } \mathrm{n}^{\text {th }} \text { term } \\
& \mathrm{a}_{\mathrm{n}-1}=\text { Value of the immediately previous term } \\
\mathrm{d}=\text { The common difference between successive terms }
\end{array}
$$

And we have a well－known formula that we teach to pre－algebra students to arrive at a function we can use to predict the any ${ }^{\text {th }}\left(\mathrm{n}^{\text {th }}\right)$ term：

$$
\begin{array}{ll}
\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d} \quad & \begin{array}{l}
\mathrm{a}_{\mathrm{n}}=\text { Value of } \mathrm{n}^{\text {th }} \text { term } \\
\\
\\
\\
a_{1}=\text { Value of the very first term } \\
\mathrm{n}
\end{array}=\text { Number in sequence of the value sought } \\
& d=\text { The common difference between successive terms }
\end{array}
$$

There is，however no such formula to use to describe the explicit form of the function when it is not linear－but there is a process we can follow and this involves the use of the calculator＇s matrix solving capabilities．

Consider the following：$\quad-1,5,15,29,47,69, \ldots$ Let＇s first line up the values

Now, remember that the Standard Form of the Quadratic is $A x^{2}+B x+C=y$ We'll use this to get the coefficients for a system of equations.

We know the y-values $(-1,5,15$, etc), and we know the placement in the sequence of each of the answers ($1,2,3$, etc), so we can replace x with 1 (and then 2 , then 3 , etc) to get the correct number of variables in a system of equations.

How many equations do we need? One for each variable, of course.

$$
\begin{array}{rr}
a(1)^{2}+b(1)+c=-1 & a+b+c=-1 \\
\text { That gives us: } & a(2)^{2}+b(2)+c=5 \\
a(3)^{2}+b(3)+c=15 & \text { Which becomes } \begin{aligned}
a+2 b+c=5 \\
4 a+2 \\
9 a+3 b+c=15
\end{aligned}
\end{array}
$$

Processing the matrix on the NSpire family of handhelds is much more direct. Bring up the calculation area (Home button, then \#1) and:

1. Type rref and open the parentheses (note that the parentheses is open and that the closing symbol is shadowed - make sure what you type next is inside the symbols)
2. Open the Template menu and select the n by n matrix, which looks like a 3 by 3 - Tell it you want a 3 row by 4 column matrix,
3. Fill in the matrix (carefully) and press [ENTER]
In this example, the solution appears as: $\left.\begin{array}{cccc}{[1} & 0 & 0 & 2\end{array}\right]$ [0

It means that 1 A , no Bs , and no $\mathrm{Cs}=2$, and that 1 B , no As , and no $\mathrm{Cs}=0$ and that 1 C , no As and no $\mathrm{Bs}=-3$.

In our function, that's $2 \mathrm{x} 2+0 \mathrm{x}-3=\mathrm{y}$, or more properly $2 \mathrm{x} 2-3=\mathrm{y}$.making the solution to our function $2 x^{2}+0 x-3=y$ or more properly $2 x^{2}-3=y$.

Now try this:

Can you determine the explicit form of the equation used to generate this sequence?
$2,5,10,17,26, \ldots$

1. Use the difference list function to subtract each term from the next one in the sequence.
$\Delta \operatorname{List}(\{2,5,10,17,26\}) \bullet\{3,5,7,9\}$
Is the difference constant? If it is we have a linear function, if not, we'll need to do the same thing for the new set of numbers. Get Δ List from the List Operations submenu in the Statistics menu. Use next page.

What does the system of equations look like?
A()$^{2}+\mathrm{B}()^{1}+\mathrm{C}()^{0}=$
A()$^{2}+\mathrm{B}()^{1}+\mathrm{C}()^{0}=$
A()$^{2}+\mathrm{B}()^{1}+\mathrm{C}()^{0}=$
So the matrix looks like . . .
$\left[\begin{array}{lllllll}(&) & (&) & (&) & (\end{array}\right)$

And the solution comes from performing the reduced row echelon form
$\operatorname{rref}\left(\left[\begin{array}{llll}(~) & (~) & (~) & () \\ (~) & (~) & (~) & (~) \\ (~) & (~) & (~) & ()\end{array}\right]\right)$

What does the quadratic look like? \qquad

Now try this one:
$10,26,58,112,194, \ldots$

And finally this one:

1. In a store display, grapefruit are stacked 4 levels high in the shape of a pyramid with a square base. What expression can be used to determine how many grapefruit can be stacked in a pyramid n layers high?
