

Minimizing Surface Area of a Cylinder

by Dwight Stead, Dufferin-Peel CDSB, Mississauga, ON, Canada

Activity overview

Students will minimize the surface area of a cylinder by collecting data from a geometric construction, estimate the minimum radius from a scatter plot, and calculate the actual radius using calculus and the CAS features of Nspire.

Concepts

Combining functions Solving optimization problem using calculus

Teacher preparation

 Students need prior knowledge on solving equations in terms of a variable and calculating first derivatives.

Classroom management tips

Have students work in pairs to facilitate communication and the comparison of solutions.

TI-Nspire Applications

Cylinder Area – Student.tns Cylinder Area – Teacher.tns

Step-by-step directions

- Copy Cylinder Area Student.tns to Nspire handheld units
- Make copies of student sheets Cyliinder Area Student.pdf
- o Distribute student activity sheets and Nspire handheld units.
- o Students work in pairs on the investigation
- Consolidate student understanding with a discussion afterwards.

Assessment and evaluation

- During the activity assess students on their use of the mathematical processes **representing**, **connecting** and **reasoning and proving**
- This activity could be used as a summative evaluation

Activity extensions

- The dimensions of the can with minimum surface area have nearly equal diameter and height. Drink cans usually have a larger height than diameter. Why would companies use these dimensions even though they cost more to create?
- If the cost of materials per cm² for the top and bottom of the can were twice the cost per cm² for the lateral surface how would the dimensions change for the cylinder with minimum surface area?