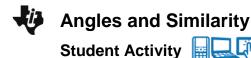

### Open the TI-Nspire document Angles\_and\_Similarity.tns.

In this activity,  $\triangle ABC$  and  $\triangle MNP$  have been constructed.  $\triangle ABC$  will not change during this exploration.  $\triangle MNP$  has been constructed so that moving points M' and N' will change the measures of  $\measuredangle M$ ,  $\measuredangle N$ , and  $\measuredangle P$ . You will investigate the relationship between  $\triangle ABC$  and  $\triangle MNP$ .



#### Move to page 1.2.


- 1. Drag points M' and N' until  $m \not = M \not =$
- 2. Drag points M' and N' until  $m \not= M = m \not= A$  and  $m \not= N = m \not= B$ .
  - a. Record the angle measures for each of the angles below:

- b. What do you notice about the relationship of  $m \not\perp P$  and  $m \not\perp C$ ?
- 3. a. Drag points M' and N' until ★M and ★N are congruent to two corresponding angles in △ABC that are different than the angles identified in question 2a. Record the angle congruence for each of the angles below:

- b. How many different ways can this be done? List any other possibilities and justify your answer.
- 4. Keep in mind that two angles are **congruent** if and only if they have the same measure.

If two triangles have two pairs of angles that are congruent, what can you conclude about the third pair of angles? Give a mathematical argument for your conclusion.

5. Why would your triangles in question 3 be described as similar, but not congruent?



| Name _ |  |
|--------|--|
| Class  |  |

#### Move to page 1.3.

- 6. Drag points M' and N' until  $\not AM \cong \not AA$  and  $\not AN \cong \not AB$ .
  - a. What additional information is given when the corresponding angle measures are equal to each other?
  - b. What is significant about this information?
  - c. After completing questions 6a and 6b, Frank concludes that  $\triangle ABC \sim \triangle NPM$ . Is his reasoning correct? Explain why or why not.
- 7. Knowing two pairs of corresponding angles are congruent leads to proportional sides. When you know the ratio of similarity and a side in one triangle, you can use it to find the measure of the corresponding side in the other triangle.
  - a. Drag M' and N' until  $m \not = M = 35^{\circ}$  and  $m \not = N = 60^{\circ}$ .

What is the ratio of similarity shown on the sketch? '

Which side of  $\triangle ABC$  corresponds to  $\overline{MN}$ ?

If  $\overline{MN} = 8$ , find the length of the corresponding side. Show your work.

b. Drag M' and N' until  $m \not = M = 35^{\circ}$  and  $m \not = N = 85^{\circ}$ .

What is the ratio of similarity shown on the sketch?

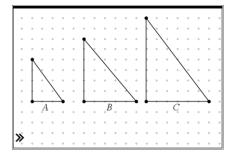
Which side of  $\triangle MNP$  corresponds to BC?

If BC = 2, find the length of the corresponding side. Show your work.



# **Angles and Similarity**

## **Student Activity**




| Name  |  |
|-------|--|
| Class |  |

8. Terry and Jessica created three right triangles shown on the screen on the right. Terry claims that all the right triangles are similar because they all have a right angle.

Jessica says that you also need to know that the measures of a pair of corresponding acute angles are congruent before you can conclude that any two of the right triangles are similar.

Who is right? Explain your answer.

