\qquad
Date

ACTIVITY 12

Sequence of

 BouncesWhen a ball is dropped from a given height, every rebound will be shorter than the one before. The total distance traveled by the ball would be the sum of all the distances it travels in each direction.

In this activity, you will explore the rebound heights of a ball and develop a sequence that will predict the rebound height of subsequent bounces. You will also find the total distance that the ball travels.

You'll Need

- 1 CBR unit
- 1 TI-83 or TI-82 Graphing Calculator
- Ball (a racquet ball works well)

Instructions

1. Run the RANGER program on your calculator.
2. From the MAIN MENU of the RANGER program, select 3:APPLICATIONS.
3. Select 1:METERS, and then select 3:BALL BOUNCE.
4. Follow the directions on the screen of your calculator. Release the ball. Press the TRIGGER key on the CBR as the ball strikes the ground.
5. Your graph should have a minimum of five bounces. If you are not satisfied with the results of your experiment, press ENTER, select 5:REPEAT SAMPLE, and try again.
6. When you are satisfied with your data, sketch a plot
 of your Distance-Time.

Data Collection

1. Use \square (the right arrow) to trace to the approximate height, y, of the first bounce. For each N, the number of the bounce, record y, the height of that bounce in the table below. Repeat for four more bounces.

\boldsymbol{N}	\boldsymbol{y}
1	
2	
3	
4	
5	

2. Press ENTER to return to the PLOT MENU. Select 7:QUIT to exit the RANGER program.
3. Plot the data points as a scatter plot in the window at the right. Press STAT, select 1:Edit to enter the bounce number, N, in L5 and the y-coordinates in L6. Press 2nd [STAT PLOT]. Select 1:Plot1, select $\omega \sim$ for the Type of plot, L5 for the Xlist, L6 for the Ylist, and the square for the Mark. Press ZOOM 0. Sketch a plot of this data.

Questions - Part One

1. The heights reached by each consecutive bounce of the ball can be thought of in terms of a geometric sequence. The model for any term of a geometric sequence is
$a_{n}=a_{1} r^{n-1}$
where a_{n} is the $\mathrm{n}^{\text {th }}$ term of the sequence, a_{1} is the first term of the sequence, and r is the common ratio between any two terms of the sequence. Use the data from your table to determine the appropriate values for a_{1} and r. Record these values.

$$
a_{1}=\square \quad r=
$$

\qquad
2. Use the values for a_{1} and r to write the model for the $\mathrm{n}^{\text {th }}$ term of this sequence.
$a_{n}=$ \qquad
Rewrite this model substituting x for n.

Press $Y=$. Enter this equation in $\mathbf{Y} 1$ and press ENTER.
3. Press GRAPH. Describe how well this function fits the data.
4. What is the equation of the exponential function that would best fit this data?

For the TI-83: Press STAT \square and select 0:ExpReg.
For the TI-82: Press STAT \square and select A:ExpReg.
This copies the command ExpReg on the home screen. Press [2nd [L5] [2nd [L6] ENTER to find the exponential regression. Record the equation of this function:
$y=$ \qquad
Press $Y=$. Enter this equation in $\mathbf{Y} 2$ by pressing \square, entering the equation, and pressing ENTER.
5. Press GRAPH. Describe how this function compares to the function in $\mathbf{Y} 1$.
6. Rewrite the equation in $\mathbf{Y} 2$ so that its exponent is $(x-1)$ instead of x. To do this, rewrite the equation as
$y=a_{1} r(r)^{x-1}$.
Then simplify $a_{1} r$. Record your new equation.
\qquad
7. Enter this equation in Y3. Press GRAPH. How does this fit compare to the fit of the functions in Y1 and Y2?
8. Predict the height for the sixth bounce. Press [nd [QUIT] to return to the home screen.

For the TI-83: Press VARS, highlight Y-VARS, select 1:Function, press ENTER, select 1:Y1.

For the TI-82: Press 2nd [Y-VARS], select 1:Function, select 1:Y1.
The command to evaluate this function at $x=6$ is $\mathbf{Y} 1$ (6). Press $\square 6 \square$. Press ENTER.
9. Predict the height for the tenth bounce.

Questions - Part Two

1. How far did the ball travel for each bounce? What is the total distance traveled by the ball? Copy the rebound heights from the table on page 62 and compute the total distances traveled by the ball.

Bounce (\boldsymbol{n})	Rebound Height (\boldsymbol{y})	Total Distance Traveled for this Bounce	Total Distance Traveled since $\boldsymbol{t}=\mathbf{0}$
1			
2			
3			
4			
5			

2. The formula for the sum of a geometric series is
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$.
To find the total distance the ball traveled over the course of a number of bounces, this sum should be doubled. Explain why.
\qquad
\qquad
3. Find the sum of the total distance the ball travels for the first five bounces.

Confirm this answer by finding the sum of the total distance traveled in the table from question 1 above.
4. This sum can also be computed directly on the calculator using the sum and sequence commands. The command is sum(seq(Y1,X,1,5,1).

For the TI-83: Press 2nd [LIST] \square [5 [2nd [LIST] $\square 5$ VARS \square 回 150 ENTER.
 \square

$$
51 \text { ENTER. }
$$

5. Find the sum of the total distance the ball travels for the first six bounces.
6. Find the sum of the total distance the ball travels for the first ten bounces.
7. The formula for the sum of an infinite geometric series is

$$
S_{n}=\frac{a_{1}}{1-r} .
$$

Find the total distance traveled by the ball, that is, find the total distance for an infinite number of bounces.

