Math Explorations with Python

TI-84 PLUS CE PYTHON TECHNOLOGY

Rational Quadratic Zeros

In this lesson, you will extend the code from **Integer Quadratic Zeros**. If you didn't complete the activity, complete that activity first <u>or</u> obtain the base code from your teacher.

In this lesson, you will create a game that lets you practice finding x-intercepts for equations in the form $y = ax^2 + bx + c$. These solutions will have one rational and one integer solution.

In the challenge, you will apply what you have learned to create a third game. This game will let you practice finding x-intercepts for equations in the form

 $y = ax^2 + bx + c$ where both x-intercepts could be rational numbers.

Objectives:

Programming Objectives:

- Use the input function and a variable to collect and store data from a user
- Use the randint() function to generate random integers.
- Use a while loop to repeat code
- Use if..elif..else statements to make decisions.

Math Objectives:

- Explore how x-intercepts are related to factored quadratic equations
- Explore how to factor equation in standard form
- Factor quadratic equations with rational solutions

Math Course Connections: Algebra 1 or Algebra 2

In this lesson, you will create a game that lets you practice finding x-intercepts for equations in the form $y = ax^2 + bx + c$. These solutions will have one rational and one integer solution.

Example 1:

Example 2:

PYTHON SHELL	PYTHON SHELL
>>> # Shell Reinitialized >>> # Running QUADZER2 >>> from QUADZER2 import * find the x-intercepts y= 7 x ² + 35 x+ 32 x1 =	>>> # Shell Reinitialized >>> # Running QUADZER2 >>> from QUADZER2 import * find the x-intercepts y= 7 x^2+ 35 x+ 32 x1 = -8/7 x2 = -4 correct!
Fns…] a A # Tools Editor Files	Fns… a A # Tools Editor Files
>>> # Shell Reinitialized >>> # Running QUADZER2 >>> from QUADZER2 import * find the x-intercepts y= 5 x^2 -17 x+ 6 x1 =	<pre>PYTHON SHELL >>> # Shell Reinitialized >>> # Running QUADZER2 >>> from QUADZER2 import # find the x-intercepts y= 5 x² -17 x+ 6 x1 = 2 x2 = 3 sorry should be 2 / 5 and 3</pre>

Fns… | a A # | Tools Editor Files

Fns… | a A # | Tools Editor Files

Teacher Tip:

To complete this project, students will need the base code from Integer Quadratic Zeros.

Ü	Math Explorations with Python TI-84 Plus CE Python Technology	RATIONAL QUADRATIC ZEROS TEACHER NOTES
1.	Open up the python File Manager. [prgm] Python App	🐣 FILE MANAGER 🛛 🛔 🚺
	Scroll through your list of projects until the arrow is to the left of QUADZERO.	
	Select [Manage]	▶QUADZERO Run Edit New Shell Manage
	Choose: 1 Replicate Program	Python App: v5.5.2.0044
		EReplicate Program 2:Delete Program [del] 3:Rename Program 4:About 5:Quit Python
	Name the new program QUADZER2.	Esc
		Current Name: QUADZERO
		Allowed - Up to 8 characters - First character:A-Z - Remaining character:A-Z 0-9 _

2. The factored equations in this problem will be of the type:

 $y = (m^*x - x1)(x - x2)$

In the first project, the line x2 = randint(-10,10) creates and stores random integer value from -10 to 10 in the variable x2

Similarily, we will let m be an integer value from two to seven.

Add a line of code after the x^2 = randint(-10,10) to generate and store the value of m.

 How does the addition of the cofficient m change the values of b and c in the code? Use distribution to solve and rewrite the equation in standard form.

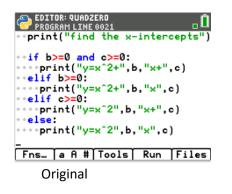
 $y = (m^*x - x1)(x - x2)$

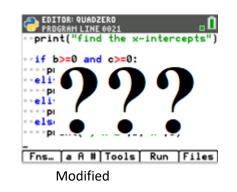
- b = _____
- c = _____

Modify the values for b and c in the code if necessary.

0k

Esc


Math Explorations with Python TI-84 PLUS CE PYTHON TECHNOLOGY


4. Does your code match the code to the right?

RATIONAL QUADRATIC ZEROS TEACHER NOTES

 When distributing m in step 3, your final equation started with mx² instead of x². How can you modify the print statements to show mx² instead of x²? Be careful. You want the value of m to display not the letter m.

6. How does the user input change?

Let's look at a sample problem:

$$4x^{2} + 25x - 21 = 0$$

(4x - 3)(x + 7) = 0
4x - 3 = 0 x + 7 = 0
x = 3/4 x = -7

Not all of the answers will be fractions, but some will be fractions. The original code:

z1 = int(input("x1 = "))

will not allow the user to enter the division sign.

To preform a calculation then store as a float, use the eval() function.

Modify the two input lines to: z1 = float(eval(input("x1 = ")) z2 = float(eval(input("x2 = "))

Fns > Type > Float Fns > I/O > eval()

EDITOR: QUADZER2 PROGRAM LINE 0018print("y=",m,"x^2+",b,"x",c) ...elif c>=0:print("y=",m,"x^2",b,"x+",c) ...else:print("y=",m,"x^2",b,"x",c) ...z1=float(eval(input("x1 = ")))s2=float(eval(input("x2 = "))) Fns... a A # Tools Run Files

7. You have one more modification to make. The original project had the line:

if (x1 == z1 and x2 == z2) or (x1 == z2 and z1 == x2):

Modify the if statement so it includes the new coefficient m.

Execute your program. Verify your if statement works.

8. Did you change the code to:

if (x1/m==z1 and x2==z2) or (x1/m==z2 and x2==z1):

<pre>Program Line 0024</pre>
<pre>**z1=float(eval(input("x1 = ")))</pre>
<pre>**z2=float(eval(input("x2 = ")))</pre>
<pre>**if (x1/m==z1 and x2==z2) or (x 1/m==z2 and x2==z1): ***print("correct!") **else:</pre>
Fns… a A # Tools Run Files
rns ja n #jiooisj kun jriies
EDITOR: QUADZER2 PROGRAM LINE 0028 ••z1=float(eval(input("x1 = ")))
EDITOR: QUADZER2

Fns… [a A # Tools] Run [Files]

9. Lastly, modify your print statement if the user input is incorrect.

Original:

print("Sorry sould be",x1,"and",x2)

Change To:

print("Sorry sould be",x1,"/",m,"and",x2)

Teacher Tip:

Random Simulations
from random import *

```
for i in range(5):
x1 = randint(-10,10)
x2 = randint(-10,10)
m = randint(2,7)
```

```
b = (-x1) + (-x2*m)
c = x1 * x2
print("Find the x-intercepts")
if b >= 0 and c >= 0:
    print("y=",m,"x^2 +",b,"x +",c)
elif b >= 0:
    print("y=",m,"x^2 +",b,"x ",c)
elif c >= 0:
    print("y=",m,"x^2 ",b,"x +",c)
else:
```

EDITOR: QUADZER2

Math Explorations with Python

print("y=",m,"x^2 ",b,"x ",c)

z1 = float(eval(input("x1 = ")))
z2 = float(eval(input("x2 = ")))
if (x1/m==z1 and x2==z2) or (x1/m==z2 and x2==z1):
 print("Correct!")
else:
 print("Sorry sould be",x1,"/",m,"and",x2)

Challenge:

Create a QUADZER3 program that generates equations with two fractional x-intercepts.

For example, $6x^2 - 11x - 35 = 0$ factors to (3x + 5)(2x - 7) = 0.

The x-intercepts would be x = -5/3 and x = 7/2.

Teacher Tip:

Random Simulations from random import *

for i in range(5):

```
x1 = randint(-10, 10)
x2 = randint(-10, 10)
m = randint(2,7)
n = randint(2,7)
b = (-x1*n) + (-x2*m)
c = x1 * x2
print("Find the x-intercepts")
if b \ge 0 and c \ge 0:
   print("y=",m*n,"x^2 +",b,"x +",c)
elif b \ge 0:
   print("y=",m*n,"x^2 +",b,"x",c)
elif c \ge 0:
   print("y=",m*n,"x^2",b,"x +",c)
else:
   print("y=",m*n,"x^2",b,"x",c)
z1 = float(eval(input("x1 = "))
z2 = float(eval(input("x2 = "))
if (x1/m == z1 \text{ and } x2/n == z2) or (x1/m == z2 \text{ and } z1 == x2/n):
   print("Correct!")
else:
```


TI-84 PLUS CE PYTHON TECHNOLOGY

print("Sorry should be",x1,"/",m,"and",x2,"/",n) print("")