Ages 17-19 - Exploring functions with CAS

a) Consider the functions $c_{n}(x)=\cos (n \cdot \arccos x)$ with $n \in \mathbb{N}_{0}$:

Conjecture

$c_{n}(x)$ is a polynomial function of degree n. The function is even if n is even and odd if n is odd.
b) Consider the functions $s_{n}(x)=\sin (n \cdot \arcsin x)$ with $n \in \mathbb{N}_{0}$:

Conjecture

$s_{n}(x)$ is a polynomial function of degree n if n is odd, $s_{n}(x)=c_{n}(x)$ for $n=1,5,9, \ldots$ and $s_{n}(x)=-c_{n}(x)$ for $n=3,7,11, \ldots$
$s_{n}(x)$ is $\sqrt{1-x^{2}}$ times a polynomial of degree $n-1$ if n is even.
The function $s_{n}(x)$ is odd for all $n \in \mathbb{N}_{0}$.
c) Consider the functions $t_{n}(x)=\tan (n \cdot \arctan x)$ with $n \in \mathbb{N}_{0}$:

Conjecture

$t_{n}(x)$ is an odd rational function, with an odd numerator and even denominator.
If n is even, the denominator has degree n and the numerator has degree $n-1$. If n is odd, the numerator has degree n and the denominator has degree $n-1$.

Proof of the conjectures

(i) Are the functions even or odd?

- $c_{n}(-x)=\cos (n \cdot \arccos (-x))=\cos (n \cdot(\pi-\arccos x))=\cos (n \cdot \pi-n \cdot \arccos x)$ If n is even, $c_{n}(-x)=\cos (-n \cdot \arccos x)=\cos (n \cdot \arccos x)=c_{n}(x)$.
If n is odd, $c_{n}(-x)=\cos (\pi-n \cdot \arccos x)=-\cos (n \cdot \arccos x)=-c_{n}(x)$.
Conclusion: $c_{n}(x)$ is even if n is even and odd if n is odd.
- $s_{n}(-x)=\sin (n \cdot \arcsin (-x))=\sin (-n \cdot \arcsin x)=-s_{n}(x)$

Conclusion: the functions $s_{n}(x)$ and $t_{n}(x)$ (analogous) are odd.
(ii) $s_{n}(x)=c_{n}(x)$ for $n=1,5,9, \ldots$ and $s_{n}(x)=-c_{n}(x)$ for $n=3,7,11, \ldots$
$s_{n}(x)=\sin (n \cdot \arcsin x)=\sin \left(n \cdot\left(\frac{\pi}{2}-\arccos x\right)\right)=\sin \left(n \cdot \frac{\pi}{2}-n \cdot \arccos (x)\right)$
If $n=1+4 k, s_{n}(x)=\sin \left(\frac{\pi}{2}+k \cdot 2 \pi-n \cdot \arccos (x)\right)=\sin \left(\frac{\pi}{2}-n \cdot \arccos (x)\right)=c_{n}(x)$
If $n=3+4 k, s_{n}(x)=\sin \left(\frac{3 \pi}{2}+k \cdot 2 \pi-n \cdot \arccos (x)\right)=\sin \left(\frac{3 \pi}{2}-n \cdot \arccos (x)\right)$
$=-\sin \left(\frac{\pi}{2}-n \cdot \arccos (x)\right)=-c_{n}(x)$
(iii) $c_{n}(x)\left(n \in \mathbb{N}_{0}\right)$ and $s_{n}(x)$ (n odd) are polynomials of degree n.

De Moivre's theorem states that for $\alpha \in \mathbb{R}$ and $n \in \mathbb{N}$:
$(\cos \alpha+i \cdot \sin \alpha)^{n}=\cos (n \alpha)+i \cdot \sin (n \alpha)$.
Expanding the left side and equating the real and imaginary parts provides expressions for $\cos (n \alpha)$ and $\sin (n \alpha)$. Then substitute $\alpha=\arccos x$ (or $\alpha=\arcsin x$).

Example:
Substitution of $\alpha=\arcsin x$ in $\sin (5 \alpha)$ yields the polynomial
$s_{5}(x)=16 x^{5}-20 x^{3}+5 x$

The binomial theorem proves the general case:
$(\cos \alpha+i \cdot \sin \alpha)^{n}=\sum_{k=0}^{n}\binom{n}{k}(\cos \alpha)^{k} \cdot(i \cdot \sin \alpha)^{n-k}=\sum_{k=0}^{n}\binom{n}{k}(\cos \alpha)^{k} \cdot(\sin \alpha)^{n-k} \cdot i^{n-k}$.
Collect the terms with even power $n-k$ of i for the real part $\cos (n \cdot \alpha)$ and substitute $\alpha=\arccos x$, then $(\cos \alpha)^{k} \cdot(\sin \alpha)^{n-k}=x^{k} \cdot\left(1-x^{2}\right)^{\frac{n-k}{2}}$, a polynomial of degree n.

Collect the terms with odd power $n-k$ of i to find the imaginary part $\sin (n \cdot \alpha)$ and substitute $\alpha=\arcsin x$.
If n is odd, k must be even and $(\cos \alpha)^{k} \cdot(\sin \alpha)^{n-k}=\left(1-x^{2}\right)^{\frac{k}{2}} \cdot x^{n-k} \quad$ is a polynomial of degree n.
If n is even, k must be odd and $(\cos \alpha)^{k} \cdot(\sin \alpha)^{n-k}=\sqrt{1-x^{2}} \cdot\left(1-x^{2}\right)^{\frac{k-1}{2}} \cdot x^{n-k}$.
Therefore $\left(1-x^{2}\right)^{\frac{k-1}{2}} \cdot x^{n-k}$ is a polynomial of degree $n-1$.
(iv) $t_{n}(x)=\tan (n \cdot \arctan x)$ is a rational function $\left(n \in \mathbb{N}_{0}\right)$.

Using the trigonometric formula $\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \cdot \tan \beta}$, we find that
$\tan (n \alpha)=\tan ((n-1) \alpha+\alpha)=\frac{\tan ((n-1) \alpha)+\tan \alpha}{1-\tan ((n-1) \alpha) \cdot \tan \alpha}$.

The substitution $\alpha=\arctan (x)$ yields the recursion formula

$$
t_{n}(x)=\frac{t_{n-1}(x)+x}{1-t_{n-1}(x) \cdot x} \quad\left(n \geq 2 \text { and } t_{1}(x)=x\right)
$$

CAS can be used to produce the sequence $t_{1}(x), t_{2}(x), t_{3}(x), \ldots$

d) Remarks
(i) Observe how CAS and formal mathematics can cooperate.
(ii) The real function $c_{2}(x)=\cos (2 \cdot \arccos x)=2 x^{2}-1$ has domain $[-1,1]$.

For CAS, the function has domain \mathbb{R} : working with complex functions, the result of $\arccos (2)$ is non-real, but $\cos (2 \arccos (2))=7$ is real!

(iii) Knowing that $c_{n}(x)\left(n \in \mathbb{N}_{0}\right)$ and $s_{n}(x)$ (n odd) are polynomials of degree n, it is possible to find these polynomials with their zeros.

To find the zeros of $c_{4}(x)=\cos (4 \cdot \arccos x)$,
observe that $0 \leq 4 \arccos x \leq 4 \pi$ and
if $4 \cdot \arccos x=\frac{\pi}{2}+k \cdot \pi \quad(k=0,1,2,3)$
or $\arccos x=\frac{\pi}{8}+k \cdot \frac{\pi}{4} \quad(k=0,1,2,3)$.

The zeros of $c_{4}(x)$ are $x_{k}=\cos \left(\frac{\pi}{8}+k \cdot \frac{\pi}{4}\right)(k=0,1,2,3)$, consequently $c_{4}(x)=a\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)$.

Find a with $\quad c_{4}(0)=1$. Result: $\quad c_{4}(x)=8 x^{4}-8 x^{2}+1$.

