\qquad
\qquad

Problem 1 - Infinite series

1. Find the next three terms of the infinite series
a. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$
b. $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\ldots$
c. $2+\frac{3}{2}+\frac{9}{8}+\ldots$

Hint: Divide each of the terms by the first term. What do you notice?
2. Write an expression in terms of n that describe each of the above series using sigma notation.

Problem 2 - Finding the sum of a geometric series

Find the sixth partial sum of two geometric series. To find the sum of a series, go to F3:Calc and select Σ (sum.
3. $\sum_{n=1}^{6}\left(\frac{1}{2}\right)^{n}=$

4. $\sum_{n=1}^{6} 2\left(\frac{3}{4}\right)^{n-1}=$

Problem 3 - Convergence and divergence of geometric Series

Use the Stats/List Editor application to display the terms of each series
5. $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$
6. $\sum_{n=1}^{\infty} 2\left(\frac{3}{4}\right)^{n-1}$
7. $\sum_{n=1}^{\infty} \frac{2}{3}\left(\frac{3}{2}\right)^{n-1}$

Fit ${ }^{\text {Fots }}$			
list. 1	list2	list.3	list.4
$\begin{aligned} & 2 . \\ & 2 . \\ & 3 . \\ & 4 . \\ & 5 . \\ & 6 . \end{aligned}$.5.75.875.9675.98458	------	
list3[1]=			
Milk	Fint if	OX FUNC	3%

Study this data. What do you notice about the terms?

Geometric Series

Graph each of series.
Select Stats/List Editor from the Apps desktop.
In list1, enter $\mathbf{s e q}(\mathbf{x}, \mathbf{x}, \mathbf{1}, \mathbf{5 0})$. This function can be found by pressing CATALOG and scrolling down.

In list2, use $\sum\left((.5)^{\wedge} \mathbf{x}, \mathbf{x}, \mathbf{1}\right.$, list1 $)$. This will list the first 50 partial sums of the series. Repeat these steps for questions
 6 and 7.

To create a scatter plot, select F2:Plots > 1:Plot Setup, then press F1 to define the graph. Select list1 for x and list2 for y, and press ENTER. To view the graph, select F5:ZoomData.
Sketch each graph below.

Decide if each geometric series converges or diverges. If the series converges, give your best guess as to its value.

