Problem 1 - Infinite series

1. Find the next three terms of the infinite series

a.
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

a.
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$
 b. $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots$ **c.** $2 + \frac{3}{2} + \frac{9}{8} + \dots$

c.
$$2+\frac{3}{2}+\frac{9}{8}+\dots$$

Hint: Divide each of the terms by the first term. What do you notice?

2. Write an expression in terms of *n* that describe each of the above series using sigma notation.

Problem 2 – Finding the sum of a geometric series

Find the sixth partial sum of two geometric series. To find the sum of a series, go to F3:Calc and select \sum (sum.

3.
$$\sum_{n=1}^{6} \left(\frac{1}{2}\right)^n =$$

4.
$$\sum_{n=1}^{6} 2\left(\frac{3}{4}\right)^{n-1} =$$

Problem 3 – Convergence and divergence of geometric Series

Use the Stats/List Editor application to display the terms of each series

$$5. \quad \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)$$

5.
$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$
 6. $\sum_{n=1}^{\infty} 2\left(\frac{3}{4}\right)^{n-1}$ **7.** $\sum_{n=1}^{\infty} \frac{2}{3}\left(\frac{3}{2}\right)^{n-1}$

7.
$$\sum_{n=1}^{\infty} \frac{2}{3} \left(\frac{3}{2} \right)^{n}$$

F1+ F2+ F3+ F4+ F5+ F6+ F7+ Tools Plots List Calc Distr Tests Ints			
list1	list2	list3	list4
1. 2.	.5 .75		
2. 3. 4. 5.	.875 .9375		
5. 6.	.96875 .98438		
list3[1]=			
MAIN	RAD APPI	ROX FUNC	37.6

Study this data. What do you notice about the terms?

Graph each of series.

Select Stats/List Editor from the Apps desktop.

In **list1**, enter seq(x,x,1,50). This function can be found by pressing $\overline{CATALOG}$ and scrolling down.

In **list2**, use \sum ((.5)^x,x,1,list1). This will list the first 50 partial sums of the series. Repeat these steps for questions 6 and 7.

To create a scatter plot, select **F2:Plots > 1:Plot Setup**, then press **F1** to define the graph. Select **list1** for x and **list2** for y, and press $\overline{\text{ENTER}}$. To view the graph, select **F5:ZoomData**. Sketch each graph below.

Decide if each geometric series converges or diverges. If the series converges, give your best guess as to its value.